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ABSTRACT

LTE test cases are 3GPP standardized. These tests must be
executed on every LTE capable device model before they
are commercially released. LTE testing practices are unme-
thodical where the focus of testing is to follow the test cases
specified in the standard as they are; resulting incomplete
and inefficient testing. We discover that the standardized test
cases are incomplete in which a number of test cases related
to multiple protocol interactions are missing. Our analysis
also show that the individual treatment of test cases and not
as a part of a whole system cause repetitive execution of test
operations; bringing testing inefficiencies. In this paper, we ar-
gue that there is a need for a complete paradigm shift from ad
hoc testing to a methodical approach for telecommunication
testing. We took a set of guidelines from LTE standard and
proposed a systematic and algorithmic approach to testing. In
the process, we combat various challenges and provide com-
plete list of test cases without enumerating all possibilities.
Our results show that by avoiding repetitive test operations,
we reduce up to 70% of LTE testing steps. We also find 87
new valid test cases which are not defined by the LTE testing
standards.

1 INTRODUCTION

The service requirements, architecture and protocol function-
alities of LTE are standardized by 3GPP. The 3GPP standard
provides a number of LTE protocols conformance test cases
to ensure that the device and network elements comply to es-
tablished procedures for their control and user plane function-
alities. These test cases validate the device implementation of
LTE protocol standards.

Our study on LTE protocol conformance testing reveals
that (1) conformance testing mainly focuses on validat-
ing/invalidating single protocol test case, mostly ignoring
interactions between two protocols. This leads to incomplete
LTE testing. (2) Each test case is self contained; its execu-
tion information is not shared with other test cases leading to
repetitive execution of test operations. These issues arise due
to unmethodical testing practices. Instead of taking guidelines
from the standard and developing an efficient, optimized and
a complete testing system, the focus of current practices is to
follow the standard as it is. In this paper, we take a systematic
approach to LTE testing based on the following key points:

(1) multiple protocol interactions in a system should be de-
fined for testing to get complete set of test cases (achieving
test cases completeness), and (2) test cases should facilitate
other test cases’ execution through common testing goals
(improving testing efficiency)

Based on our key point 1 to achieve test cases’ complete-
ness, we formulate the problem of finding multiple protocol
interaction related test cases. To give a bit of background, a
device and network simulator exchange a number of messages
to execute a test case. To generate one such message, the de-
vice traverses through different states of one or more LTE
protocols Finite State Machines (FSMs). Simply looking at
device output messages, we can tell that the device has prop-
erly transitioned different states of FSM(s). This observation
significantly reduces our effort to generate device test cases.
A test case is represented as an output messages combination
that a device can generate. To provide complete list of test
cases, we are required to generate all possible combinations
of these output messages. For n output messages, there are 2"
possible test cases, which are practically infeasible to analyze.
We are interested in finding all those output message combi-
nations that the device will never produce, which maps into
a problem of finding all don’t cares output values for output
message combinations. We traverse device protocol FSMs in
reverse (from output state towards input state) to find these
don’t care outputs. This is challenging especially when each
protocol FSM has too many states to traverse (consider all
states related to configurations, timings and functionalities).
This motivates us to reduce the number of states at device
protocol FSMs. We refer to FSM reduction and minimiza-
tion algorithms in finite automaton. We propose two novel
algorithms that minimize only deterministic finite automa-
ton (DFA) states through LTE domain knowledge and skip
non-deterministic finite automaton (NFA) states minimization
(which is an NP complete problem). Once we get compact rep-
resentation of device protocol FSMs, we can quickly find the
don’t cares from output message combinations and provide
complete set of test cases without enumerating all possible
device output message combinations.

For our second key point to improve LTE testing efficiency,
we propose an algorithm to remove repetitive steps for a
test case. Our algorithm is based on a common graph data
structure for all test cases. The graph nodes record the output
parameters of a particular step in a test case, thus maintaining



execution history in the graph nodes for all the steps in a test
case. The test cases that come later do not repeat the same
steps already executed by previous test cases, rather they reuse
the stored output parameters and skip the entire execution of
those steps. Storing output parameters for all the steps of
test cases however is memory intensive and computationally
infeasible. We address this issue by maintaining multiple
graph data structures mapped to different test scenarios. A
graph data structure, however, is shared among test cases
belonging to the same scenario.

To test our proposed system, we have implemented 3GPP
test cases along with our algorithms. We create the device
FSMs and their representation as finite automaton. We also
generate complete test cases by excluding don’t care device
outputs. By doing so, we find 87 new test cases where 60
test scenarios were not even mentioned in LTE testing stan-
dards. Also, our test case optimization algorithm executes
43%, 11%, 70% and 50% less number of steps for Attach,
Detach, Tracking Area Update (TAU), and Service Request
functionalities, when compared to 3GPP test cases execution.

2 LTE TESTING

We briefly discuss importance of LTE testing, its limitations,
and applications beyond LTE technology.

Importance of LTE testing LTE testing is one of the key
factors in making LTE a success. Operators and network ven-
dors not only rely on User Equipments (UEs) (also referred
to as ‘device’ in this paper) to obey the standard properly but
they also require the phones on the network to be compliant.
3GPP defines the behavior of the phone and the network in
every operational situation. These operational situations are
defined in LTE protocol conformance testing specification[1]
that defines a number of test cases to validate LTE protocol
operations. These test cases ensure that different LTE proto-
cols (such as radio connection control, mobility management,
session management, connection management, transport and
tunneling protocols) work correctly in every operational situ-
ation. These test cases are tested through messages exchange
between device and a Network Simulator (NS). Both device
and NS implement their Finite State Machines (FSMs) and
ensure the correctness of the test case through required states
transitions. Figure 1a shows a test case execution scenario, in
which device FSM generates an output message (O;) and NS
consumes that message to validate the message correctness.

Current LTE Testing Practices and Limitations Current
LTE Testing practices are adhoc; they do not follow a system-
atic approach to testing and do not guarantee completeness. In
our study, we find that although LTE standard discusses LTE
testing in every operational situation as well as abnormal de-
vice behavior, these test cases do not cover every test scenario.

Attach Req Attach Req

o 1 0

O1_| Network Device Ol Network 0 1
FSMs FSMs FSMs 1 1

0 0

Device
FSMs
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Figure 1: LTE test execution scenarios between device and network

This is mainly because current LTE testing practice has fo-
cused on testing a single protocol execution. There exist cases
where multiple protocols’ execution overlap, and currently all
these protocols’ interactions are not tested. Figure 1b) depicts
the case when two output messages (O; and O;) are fed to NS,
that validates the correctness of their interaction. To elaborate,
we take an example of LTE Attach Request procedure. In this
procedure, two EMM (EPS Mobility Management) protocols
interact by using one message (Attach Request message). It
generates 4 possible output message combinations (as shown
in Figure 1c). (0, 1 ) and ( 1, 0 ) represents the absence
of message from one protocol making it a test case of single
protocol interaction!. ( 1, 1) represents message from both
protocols making it a case of two protocols interaction. (0, 0
) is a test case that corresponds to the absence of messages.
The absence of Attach Request message triggers timeout that
may impact the behavior of the interacting protocol?.

We further discover that LTE testing treat all test cases
individually based on conformance to LTE test standard; a
test case does not transfer its execution information to a later
test case in a series of tests. This leads to inefficiencies with
repetitive execution of test steps for a new test case to bring
device into a certain state (e.g. idle or connected state etc.).
For example, almost all LTE Attach related test cases require
the device to be switched off and then on, so that the device
can initiate an Attach test case. However, such repetitive de-
vice power off/on steps execution can be avoided if the next
test case uses the knowledge from the previous test case that
has successfully executed these steps.

We also looked into commercially available testing solu-
tions provided by two leading[2] LTE test equipment ven-
dors, namely Anritsu[3] and Anite[4]. Their testing data
sheets[5][6] and demos[7] reveal that their test equipments
do not bring any changes to testing implementation guide
provided by 3GPP[8]. They treat each test case individually
and only execute those test cases which are provided by the
3GPP. Their approach to testing is inefficient as they treat test
cases individually and do not transfer the previous test case
execution knowledge to the following test case. We conclude
that LTE chipset manufacturers, device vendors, and network

! For example, device protocol generates one EMM message to NS.
2Such interaction can be between same protocol (e.g. two EMM (EPS Mobility Man-
agement) protocol messages interact) or between two different protocols (e.g. EMM
and ESM (EPS Session Management) protocols messages interact.)



operators perform test cases in the same way as test equip-
ment vendors execute them.

The above observations show the current mindset of the test-
ing community that is inclined towards telecommunication
standard based textbook testing. We advocate for a shift to-
wards a system design approach that brings computer science
way of thinking in telecommunication testing. We aim to de-
sign and develop a testing system that treats individual test
cases as the building blocks to a testing framework, along with
algorithms to optimize test cases’ steps as well as improve
test cases’ efficiency.

Testing beyond 4G LTE Researchers who are developing
systems for the next generation wireless networks often face
a challenge of verifying their designs. Testing plays a cru-
cial role in making these design practical and deployable in
real world. Through testing, researchers ensure that their sys-
tems adjust properly and quickly under a number of scenarios
which are both common and corner case scenarios. Although,
this paper has focused on 4G LTE testing but our methodol-
ogy is generic and can be applied to testing in general. Other
areas of research that benefit from our work include: wire-
less and mobile computing, e.g. 5G New Radio (NR) testing;
application specific testing, e.g. Cellular Internet of Things
(CIoT) testing; and many more. Mobilizing mmWave (mil-
limeter Wave) with 5G NR is going to introduce new test
challenges when cable access on cellular devices are replaced
with transceivers with integrated phased array antennas. These
challenges include repeatability, configuration, and coverage,
as well as testing accuracy, test time, and ultimately cost.
These testing challenges can be solved through our complete
and efficient testing methodology. Similarly, 5G cellular IoT
solutions that include LTE-M (LTE for Machines) and NB-
IoT (Narrow Band IoT) require extensive testing before their
deployment. Their test cases are related to network integra-
tion, coverage, battery consumption, and more. Our testing
methodology can provide complete and efficient testing to
these emerging technologies.

3 TEST COMPLETENESS

We discuss current limitations in providing complete list of
test cases followed by our approach.

3.1 Limitations and Challenges

To make LTE testing a systematic testing; we view test cases
as a sequence of messages exchange rather than testing a
particular scenario. We reason that LTE test case procedure
involves an exchange of messages between device and net-
work. The sequence of these messages conclude whether the
test case has passed or failed. For example, in device Attach
test case, device and network exchange a number of messages
related to Radio Resource Control (RRC), Security Mode,

Authentication, and Packet Data Network (PDN or IP) con-
nectivity. We view LTE testing as the interaction between
device and network. If all such interactions between device
and network (in any order) are successful then we have tested
all test cases; otherwise not. To provide complete list of test
cases, we are required to generate a list of test cases that
include all possible combinations of these messages. For n de-
vice output messages, there are 2" possible test cases, which
are practically infeasible to analyze. The real challenge is to
provide complete list of test cases without considering all
possible message combinations.

3.2 Our approach

We aim to validate LTE protocols interaction to ensure that
all different combinations of protocol messages are tested for
correctness.

Testing as protocols interaction The purpose of device
state transitions and their interactions is to generate a message
for the network simulator. Hence, LTE testing looks into mes-
sage exchange between the device and the network. We can
significantly reduce device protocol FSMs testing by simply
looking at the output message (O;) that device FSM has pro-
duced, as shown in Figure 1a. If the message produced by the
device FSM is the one that the NS is expecting, then device
internal FSMs state transitions and interactions were correct.
If the NS has received an unexpected message from device
then we only debug those states which have produced that
output message, rather than traversing all the states of device
FSM(s). Therefore, we can say that by reverse-engineering
device output values, the device states transition can be found,
through which a device test case can be defined.

Don’t care outputs We provide complete set of test cases
which explore all possible output message combinations pro-
duced by device FSMs when two protocols are interacting
between device and NS. For n possible output messages pro-
duced by two protocols running at the device, one is required
to test 2" message combinations.

We consider optimizing the choices of output message
combinations from two protocols interactions. We do not want
to generate test cases for those message combinations which
were never produced by device FSMs. We annotate these
message combinations as don’t care outputs. To find don’t
care outputs, we have to traverse device FSMs in reverse and
find out if the corresponding output is valid or not. Finding
don’t care outputs however is practically infeasible when
device FSMs have too many states.

Compressing device FSMs We can quickly find the don’t
care outputs if we skip few states in device protocol FSM.
We can even skip visiting a complete portion of FSM which
might have some constraints on message combinations. This



motivates us to compress device FSMs by merging certain
states from FSMs.

Finite Automaton To compress FSMs, we model these
FSMs as a finite automaton. Much like FSMs in finite au-
tomaton, we have a start state, finite set of states, a final state,
set of transitions, and a transition function. Some states are
deterministic while others are non-deterministic. If for each
pair of states and possible transition conditions, there is a
unique next state (as specified by the transition function),
then the finite automaton is deterministic, i.e. Deterministic
Finite Automaton (DFA); otherwise, the finite automaton is
non-deterministic, i.e. Non-deterministic Finite Automaton
(NFA).

Converting NFA to DFA We restate that our aim is to
reduce number of states and to keep FSM running in linear
time. We find that reducing number of NFA states (by re-
moving unnecessary states) is proved to be NP-complete[9].
Moreover, running time for an NFA is O(n?*m) compared to
O(m) in case of DFA, where n is number of states, and m is
the number of identical transition conditions[10][11]. This is
because NFA has n possible next states compared to DFA that
has only 1 path to next state for a given transition condition.
This motivates us to convert NFA into DFA.

3.3 LTE Testing as Finite Automata

Overview of our solution We model LTE testing as a prob-
lem of finding don’t care output combination values in Finite
Automata. All possible output combinations minus don’t care
outputs are complete list of test cases. To find don’t care out-
puts efficiently (i.e. running time of FSM interaction remains
linear), we first convert NFA into DFA. We propose a novel
algorithm that reduces FSMs states by converting selected
NFA states to DFA. We further minimize FSMs states through
DFA minimization procedure. We can do so because two or
more DFA states can be equivalent, where these states tran-
sition to same next states for same transition condition. We
merge these equivalent states and get compact representation
of LTE protocols FSMs. To find as many equivalent states
as possible to merge, we provide a new definition of states
equivalence. We uses LTE domain specific knowledge and
argue that a number of FSM states have LTE timing and pro-
tocol constraints. These states are said to be equivalent and
merged because in reality they never occur together. In this
regard, we propose a novel DFA minimization algorithm that
converts non-equivalent states to equivalent states and then
merges these states.

3.3.1 Reducing FSM States

We first convert NFA states to DFA states to reduce the total
number of states in FSM.

Inefficiencies in NFA to DFA conversion Robins and
Scott algorithm[12] is the best known algorithm to convert

NFA to DFA[13][14]. Such conversion is made through power
set construction. The DFA is obtained through a state set 2",
the power set of n, containing all subsets of original NFA
state set n. The exponential number of DFA states are due to
the degree of non-determinism of current state. The current
state can transition to a number of next states for n possible
transition conditions. Through power set construction — which
is practically inefficient — all possible states are recorded.

In literature[15][16], it has been shown that number of states
in DFA dramatically increase when more than one transition
conditions are considered. It has been proved that maximum
number of states in DFA reach 2%, 227'1, 237", and 2" when
number of transition conditions are 2, 4, 8, and n, respectively.

Algorithm 1 Selected NFA states to DFA states conversion

1: input: = {nstates, trans_cond, trans_func, curr_state, next_state}
2: Call procedure Reverse-Edges()
3: procedure NFA-TO-DFA-PROCEDURE

4: while nstates are not visited do

St if curr_state transitions to two or more next_state then
6: if trans_func takes only one trans_cond then

7 for all next_states do

8: dfa_state U next_state

9: divert edge arrows from next_states to dfa_state
10: add edge from dfa_state to curr_state

11: add trans_cond to the edges

12: Call procedure Reverse-Edges()
13: procedure REVERSE-EDGES

14: if curr_state transitions next_state(s) on trans_cond then
15: for all next_state(s) do

16: swap (curr_state, next_state(s))

17: reverse edges arrows

18: keep trans_cond and trans_func

Converting selected NFA states to DFA We proposed
NFA to DFA conversion (Algorithm 1) that converts only
selected NFA states to DFA and does not generate power set
of NFA states. In our algorithm, we mainly focus on two
points: (1) visiting the states from output (in reverse), and
(2) converting those NFA states to DFA which have only one
transition condition (which is very common in LTE, as we
show later).

For (1), we swap current state with the next state (algo step
16) and then reverse the edges while keeping transition con-
dition and transition function unmodified (algo steps 17-18).
Thereafter, the FSM can be traversed in reverse and the ini-
tial FSM state can be reached that has generated final output
value.

For (2), our algorithm processes only those states which have
exactly one transition condition to the next state. Our algo-
rithm first checks whether current state is indeed an NFA;
that is, it has more than one next states on a given transition
condition (algo step 5). Note that, when current state has only
one next state then that current state is already deterministic
and algorithm moves to next state (algo step 4). When first if
condition (algo step 5) yields true, then the algorithm checks
whether current state to next states transitions are carried



through one transition condition or not (algo step 6). If this
condition is satisfied then NFA to DFA conversion begins. In
such conversion, our algorithm merges all next states of cur-
rent state and creates one DFA state, which is a set of merged
states (algo step 8). Thereafter, it changes the edges such that
all incoming and outgoing edges of all merged next states are
diverted to newly created DFA state, and a transition edge is
inserted between DFA state and current state (steps 9-11).
Lastly, we again reverse the edges from current state to next
state(s) before we perform further action on DFA states. Note
that this is an important step before we further reduce DFA
states (section 3.3.2). If we do not reverse the edges then
process of reducing DFA will give us NFA back again. This
has been shown in Brzozowski’s algorithm[17] that DFA min-
imization converts the input DFA into an NFA by reversing
all its arrows and exchanging the roles of current and next
states.

States with one transition condition are common in
LTE We elaborate that in fact one transition condition states
are common in LTE which are related to LTE timers and func-
tionalities. The most common examples we see are timers han-
dling reject conditions. The standard specifies, if subscriber
device request is rejected for certain number of times then
current state should transition to a particular next state (with
reject transition condition); otherwise current state should
transition (with same reject transition condition) to some dif-
ferent next state. Similarly, most of LTE functionalities also
have NFA states with exactly one-transition condition. The
transition condition remains same for different types of ac-
tions, such as cell search, camping on cell, multiple or single
bearer request, and priority related features etc. To take an
example, if the device serving cell state meets certain thresh-
old value, it should transition to intra-freq measurement state,
otherwise it transitions to inter-frequency measurement state.
The transition condition for both future states is measurement.

Discussion Our algorithm processes those states which
have only one transition condition to next state and does not
construct the power set of states. The complexity of our algo-
rithm is linear where while() loop (algo step 4) iterates over
constant number of states (finite set of states is provided as an
input to algorithm). The for() loop (algo step 7) also iterates
over constant number of next states because our algorithm
executes this step only when current state transitions to next
states over single transition condition. Note that, number of
next states can be found by looking at number of arrows com-
ing to current state (we are looking at arrows not tails as we
are processing in reverse)

Example We now provide an example in which our al-
gorithm converts an NFA to a DFA, as shown in Figure
2. Two different test cases (test case numbers 10.5.1 and
10.5.1b in[1]) transition from current state of PDN_req_init
into two different states Procedure_Transaction_Pending and

Response_Pending:
{Procedure_Transaction_Pending,
Bearer_Context_Active_Pending}

Timer T3482 = 8 sec
PDN_Req_Init = PDN req --)
~.| Bearer_Context_
(a) ESM NFA (b) ESM DFA

Figure 2: One-transition NFA states are converted into DFA

Procedure_
Timer 73482 = 8 sec ~7| Transaction_Pending
PDN req

DN_Req_Init ¢
~ PDN req

Bearer_Context_Active_Pending states respectively, using
one transition condition "PDN req". Both these test cases
are requesting PDN from the network. The first test case is re-
questing an additional PDN for its uplink (UL) data, whereas
the second test case also requests an additional PDN but using
NAS signalling low priority. In 10.5.1b, UE establishes a ded-
icated radio bearer associated with the default EPS bearer con-
text, before sending an additional PDN connectivity request.
That’s why UE moves to Bearer_Context_Active_Pending
state.

3.3.2 Minimizing FSM States

In DFA minimization, two or more equivalent DFA states are
merged and represented as one state. Two or more different
states are said to be equivalent, if these states transition to
same next states for same transition condition.

DFA minimization overview Hopcroft algorithm for DFA
minimization[18] is the best known algorithm for minimizing
a DFA[19][20] and has complexity of O(nlogn). The key idea
of the algorithm is to partition the states when two states are
not equivalent. At first all states are placed into one partition
and thereafter the partition in refined. The states which are
not equivalent are removed from the partition, whereas the
equivalent states are merged. The key ingredient of Hopcroft
algorithm lies in the way the partitioning is done. The idea is
to not partition on already visited transition condition until
the partition is further split. In that case, the algorithm only
checks one of the two new partitions.

DFA minimization of mixed NFA-DFA FSM We pro-
pose a new algorithm for DFA minimization but use the parti-
tioning procedure from Hopcroft algorithm. Unlike Hopcroft
algorithm that works on only DFA FSM, our algorithm re-
duces FSM which is a mix of NFA-DFA. Indeed, like many
other FSMs, LTE protocol FSMs are mix of NFA and DFA
states, where we have also converted few NFA states into
DFA states (algorithm 1). From Hopcroft algorithm, we find
that as the number of equivalent states increase, the overall
number of states in FSM decrease (as equivalent sates are
merged together). Although, we cannot increase the states
equivalence in FSM, we can achieve same result by merging
two or more states which have constraints on each other. We
use our LTE domain knowledge and introduce protocol states
and timing constraints.

Protocol states constraints In LTE protocol FSMs, some
protocol states have constraints on other states. Few of such
constraints have been shown in LTE NAS standard (Figure
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Figure 3: Two equivalent DFA states are combined

5.1.3.2.2.7.1: EMM main states in the UE)[21]. For example,
when the device is in idle state and wants to send/receive
voice/data packets, it initiates the Service Request (SR) proce-
dure and moves to Service_Request_Init state. While the SR
procedure is ongoing, assume the device changes its location
and wants to perform Tracking Area Update (TAU) procedure,
however it cannot do so. Because the TAU procedure can only
be initiated from device state EMM_Registered. Thus we can
say that all TAU and SR related states have constraints on
each other, where device cannot be in both states at the same
time, and we can merge these states. As a result, our modified
FSMs will never produce those output values that capture
TAU and SR interactions (which are don’t care outputs). In
short, we list all such protocol constraints and merge them.

Timing constraints: Similar to protocol states constraints,
there are timing constraints between different states. For ex-
ample, to initiate the normal TAU request message, the device
must have moved to a different LTE base station cell (that
is, its location must have been changed). Further, LTE base
station cell can only corresponds to one tracking area, because
System Information Block-1 (SIB1) broadcasts only one track-
ing area code for a cell. Therefore, one cell can’t be part of
two different tracking areas. This example shows timing con-
straint situation where normal TAU procedure can only be
initiated after UE has moved to different cell belonging to a
different tracking area.

Algorithm We now explain our algorithm of minimizing
DFA states, as described in Algorithm 2. At the start of the
algorithm, there is only one partition which contains sets of
all states in an FSM (algo line 6). Like Hopcroft DFA min-
imization algorithm, our algorithm iteratively reduces parti-
tion by removing non-identical states. However, on each such
iteration, it only performs further action when the state is de-
terministic (algo line 10), otherwise it splits the partition and
removes the non-deterministic state (algo lines 8-9). Before it
performs further actions on deterministic states, it makes sure
that (1) for state p, there is no equivalent state, i.e. state p does
not belong to current partition (p — other partitions); and (2)
there does not exist any state in current partition which has
constraint with state p (i.e. p ¢ constraint). If both (1) and
(2) are false, that means current state has equivalent state or
constraint state in the partition and for() loop (algo line 7)
moves to next iteration. If either (1) or (2) is true, then state
p is moved out of the partition (algo line 11) and becomes a
different partition (algo line 13). Once the algorithm moves p

out of the partition then it checks whether p belongs to current
state or the next state and updates accordingly (algo line 14-
17). Note that it is possible that merged states may not be fully
connected to other states. Therefore, on each iteration, we
make sure that all incoming and outgoing transition arrows
of merged states are updated accordingly (algo line 18).

Algorithm 2 Minimizing DFA states

1: input: = {nstates, trans_cond, trans_func, curr_state, next_state}
2: procedure MINIMIZE-DFA

3 p1 is sub-partition 1; p, is sub-partition 2

4 constraint, constraint vector

5 while no further partitions can be done do

6 parition_1, all set of states in FSM; parition_2, 0

7 for each element p of parition_I do

8 if p is non-deterministic then

9 split(p, parition_I)

10: else if (p — other partitions) OR (p ¢ constraint) then
11: {p1.p2} = split(p, parition_I)
12:

13

14

15

16

17

if p belongs to {p1,p2} and p # O then
parition_2 = p
if curr_state == p then
curr_statemin =p
else if next_state == p then
next_statemin =p

18: update trans_cond for p

Discussion Our algorithm does not introduce any further
complexity compared to Hopcroft algorithm, where it makes
the decision of state being deterministic or non-deterministic
in one step (algo line 8). It simply checks that the current
state must not transition to more than one next states for
a given transition condition. That means the state is NFA
without even checking the next states. The step of splitting
on non-deterministic state can be viewed as like that state
does not have equivalence behavior. Therefore, the splitting
procedure (algo line 9) does not add extra complexity either.
The step of checking protocol state constraint and timing
constraints require to first know whether the current state
being partitioned is part of a set of constraints or not. If it is
part of a set of constraints, then next algorithm checks whether
current partition contains those states or not. We make these
two steps efficient by first logging all such constraints as a
constraint vector. Because constraints vector is of fixed length
and the number of constraints are not too many (because
these constraints are related to overall LTE functionalities,
and not specific to states or timers etc.). Therefore, checking
this constraint can always be done in linear time. Further, we
avoid creating extra steps by merging constraint condition
with partition condition.

Example We now provide an example from three LTE
test cases in which our algorithm minimizes equivalent DFA
states. Three test cases (test case number 9.2.3.1, 9.2.3.1.9a,
and 8.5.1.4 in[1]) share part of common procedure. As shown
in Figure 3, these test cases want to perform TAU procedure
but under different triggering conditions. In test case 9.2.3.1,
when UE moves to a different cell belonging to a different



Table 1: Summary of test cases — our procedure finds new legitimate test cases

Protocol
Interaction

Procedure de-
fined by 3GPP

Tests cases de-
fined by 3GPP

Procedure not de-
fined by 3GPP

Total missing test
cases by 3GPP

ECM3and ECM

141

118

18

ECM and EMM

14

10

7

EMM and EMM

161

142

29

ESM and ESM

25

22

6

Total

341

292

60

tracking area, it initiates TAU procedure. However, in test
cases 9.2.3.1.9a and 8.5.1.4, UE fails to recover from radio
link failure and needs to perform connection recovery. Once
the UE connection is recovered, TAU procedure is performed.
Hence, we can minimize these DFAs by merging TA Recovery
and Connect Recovery states (shown in Figure 3b).

3.4 Proof of Completeness

We provide the completeness proof by contradiction. The
intuition of our proof is based on contradicting a number of
possibilities and reason that our test cases are complete. We
can say that our test cases are complete if we have transitioned
all FSM states, ignoring some output values do not impact
the completeness, and testing those two protocols interactions
which are valid and supported by standard.

Proof by contradiction We put forward two possible cases
and contradict them to prove the completeness of our ap-
proach.

Case 1: We assume that a practical input value was not
tested: It’s true that we do not test for don’t care output values,
but these output values never happen in reality. We ignore
all those input values I which the FSM will never produce
that we call don’t care outputs X. Skipping test cases which
require don’t care values will not lead to missing test cases
(i.e. incompleteness scenario) because in reality there exists
no such FSM transition. We test all practical combinations
of output values of a completely defined FSM by the 3GPP
standard documents. C is a specification domain that includes
all FSM states S that work with finite set of inputs, I. That
is C = S X I. Further, we traverse FSM in reverse for a given
output value O (Algorithm 1), we always trace back to the
given input value I. In other words, the output leads us to the
deterministic FSM and all states can be traversed. It means
that there is not any practical value which was not tested on
a completely defined FSM. Hence, our argument contradicts
the assumption that we can miss any practical input value that
drive the FSM state(s).

Case 2: We assume that certain protocols interactions are
missing: Missing those protocol interactions which never
occur in reality means not testing the case which will never
occur. Recall that we consider two protocols interactions. It
means for every one output value, there are two possibilities
for the other output (where the other protocol output exists

3EPS Connection Management (ECM) involve signalling connection that is made up
of two parts: an RRC connection and an S1_MME connection. In this paper, RRC test
cases are part of ECM procedure.

or not). In other words, we have four possible combinations
(these are not four values). Because all such possibilities are
within the 3GPP standardized device behavior, we can test all
valid combinations (that an FSM can generate). Hence, it is
not true that we could miss certain protocols interactions.

By contradicting case 1 and case 2 we show that the test
cases we generate are complete.

3.5 Analysis

Once we have reduced the device side FSMs and identify
don’t care output values, we can generate complete test cases
for LTE protocol interactions. We defer to for dis-
cussion on our implementation, and provide analysis on test
case completeness first.

Our procedure generates 30% more test cases compared to the
number of test cases currently defined by 3GPP. The summary
of our result is shown in Table 1. We also find that 60 protocol
interaction behavior is not defined even by 3GPP protocols
standards. Refer to Table 2 that provides list of 10 new test
cases and identifies new vulnerabilities in the 3GPP standard.
The rest of 74 test cases expose relatively less serious issues,
such as delay in service access, procedure repetition, down-
grade to lower priority cell, temporary loop between device
states (i.e. idle and connected states), two procedures tem-
porarily blocking each others, and more. Now we provide
brief analysis on three novel vulnerabilities discovered by our
test cases (other than those discussed in Table 2).

Integrity and ciphering is not enforced We found that
device can skip applying RRC ciphering and integrity protec-
tion even if they are enabled at the network. Such a scenario
has been shown in Figure 4, where Attach Request message
is forwarded to MME (Mobility Management Entity) (step 4)
before RRC security procedure starts (step 6). If the UE sends
Security Mode Failure message to eNodeB (Evolved NodeB
is a term used for LTE base station), the 3GPP standard al-
lows device to communicate with the network without any
protection, whereas the Attach procedure is allowed to com-
plete. We verify this from LTE RRC standard (Section 5.3.4
Initial security activation procedure in 3GPP TS 36.331[22]).
The standard states that after sending Security Mode Failure
message, the UE shall "continue using the configuration used
prior to the reception of the Security Mode Command mes-
sage, i.e. neither applies integrity protection nor ciphering".
To address this issue, we create a test case that makes 5 re-
tries of Security Mode Command message when it receives
Security Mode Failure message from UE. On receiving 5"
Security Mode Failure message, the eNodeB bars the device
to camp on its cell for small amount of time (60 seconds in
our test case).

Sending data without RRC security success We find that
the device can send uplink (UL) data even if it has failed



Table 2: Summary of novel findings. These use cases are not defined in 3GPP testing standard and potential vulnerabilities remain untested.

Issue Protocols Problem Root Cause Impact 3GPP Standard  dis-
test case|cusses issue?
exists?

Detaching |ECM — EMM |Device can send non-integrity pro-|The standard allows certain types of messages can be|Adversary can let victim |[No No

victims tected Detach with cause power off |sent as non-integrity protected device detach.

Service pro-[ECM — EMM |Local EPS bearer context is deacti-| The device fails to establish user plane radio bearers|EPS bearer context deac-|No No

visioning vated without ESM signalling when ECM process at network is delayed tivated.

Skipping in- ECM — EMM | TAU message without integrity pro-| TAU due to an inter-system change in idle mode is ac-| The device reports wrong |No No

tegrity tection is accepted cepted by the MME even without integrity protection |location to network.

Privacy leak-[EMM — ECM |After 4 retries from MME, the MME does not mark the device which has failed to per-| Using old GUTI compro-|No No

age GUTI reallocation procedure stops |form GUTI reallocation procedure as vulnerable. mises user location.

Null in-EMM — EMM [ 2”9 attach is processed by MME|The device capability related information element (IE)| Device attaches as non-|No No

tegrity whose IE differs from 15/ attach  |in the Attach Req differs from the ones received earlier |integrity protected.

Barring  to|EMM — EMM | Processing Attach request without| The MME processes the Attach Request while waiting|Sending Attach instead |No No

Attach receiving Identity Response on Identity Response message from UE of Identity Req bars UE.

Inconsistent |EMM —EMM |Device proceeds Detach procedure | Before the detach request is received at UE, UE initiates| MME and Device states |No Yes, TS 24.301,

states whereas MME proceeds TAU TAU procedure. MME aborts detach and proceeds TAU |are inconsistent. 55235e

TAU is|ESM — ECM |PDN procedure is blocked by RRC | Bearer Modification and RRC-Reconfiguration with TAI| UE will end up keeping|No No

blocked reconfiguration (doing TAU) change collide. TAU is blocked by earlier procedure invalid tracking area.

Unauthorized ECM — ECM |UE keeps radio connection for re-| When the user identities are not found at EPC, the RRC | Connecting eNodeB with |No Yes, TS 36.413,

connection jected RRC request req is rejected but UE remains camped on eNodeB cell |expired USIM cards. 8.3.3

Deadlock ESM - ESM |UE and network both initiates Ded-| Both UE and network has received/sent Activate Dedi-| Network and UE wait on |No No

icated Bearer Procedures cated Bearer Request and enter into undefined behavior |each other request.
UE NAS UERRC eNodeB MME
1. Attach Req 2. RRC-Conn-Req UE NAS UE RRC eNodeB MME
UENAS UERRC eNodeB MME 3. RRC Conn-Setup I:tlec AR, Ric-conn-Req
1. Attach Req 2. RRC-Conn-fed ?Ax:fl;cs:q"‘;g:";w 5. Attach Request 3. RRC-Conn-Setup
3. RRC-Conn-Setup RRC}connected]| RLF[3. RRC‘C"""'C""‘Px
4. RRC-Conn-Comp. '_&SL-MM (Attach Request)
TAttach Request) 7| 5- Attach Request 7. RRC-Conn- RRClconnected]
Reconfig. Req 5. RRC-Conn-
6. Sec-Mode-Cmd 8. RRC-Conn- Re-establish Req
7. Sec-Mode-FaiIurel Reconfig. Compl 9. Attach Accept Waiting] for Timer 6. RRC-Co.nn-
10. Attach Complete T3410 |[to expire Re-establish Comp

Figure 4: RRC integrity and ciphering is not applied

Figure 5: Data transmission starts without acti-

vating RRC security

to complete RRC security procedure, as shown in Figure 5.
The device sends Atfach Request message as piggybacked
with RRC Connection Complete message and moves to RRC-
Connecteds state. In RRC-Connected state, the eNodeB sends
Security Mode Command to UE (step 6). However, before
it receives Security Mode Response from device, eNodeB
establishes Signalling Radio Bearer 2 (SRB) for device up-
link/downlink data by performing RRC Connection Reconfigu-
ration procedure (steps 7-8). Meanwhile, the Attach procedure
completes (step 9-10); whereas the device does not generate
a security mode response at all. We find that the device is
able to send UL data even if the RRC security procedure did
not conclude. We discover that this is indeed a loophole in
the standard (Section 5.3.5.3 Reception of an RRC Connec-
tion Reconfiguration procedure in 3GPP TS 36.331[22] and
Note 3). It has been stated, "if the RRC Connection Reconfig-
uration message includes the establishment of radio bearers
other than SRB1, the UE may start using these radio bearers
immediately, i.e. there is no need to wait for an outstanding
acknowledgment of the Security Mode Complete message."

Note that eNodeB does not have any timer linked to security
mode command and cannot resend Security Mode Command
message, if the response to previous request is not made.

Figure 6: Re-Attach Request is delayed due to Radio Link
Failure

To address this vulnerability, we add a test case that makes
sure that the device has sent security mode response (either
complete or reject).

Re-Attach Request is delayed In this issue, the device reg-
istration procedure is delayed upto 15 seconds (timer T3410’s
default value). Figure 6 shows that although the eNodeB has
failed to receive RRC Connection Complete message piggy-
backing Attach Request from device, the device enters into
RRC Connected state. Such failure of message comes because
of Radio Link Failure (RLF). On RLF, the device recovers the
radio connection by performing RRC Connection Reestablish-
ment procedure (step 5-6), but does not re-send the Attach Re-
quest message. Therefore, UE NAS layer times out for Attach
Request message and re-send the request. One can argue that
RRC Connection Complete message which is sent over SRB1
will be recovered by Radio Link Control Acknowledgement
procedure (RLC ACK). However, RLC procedure recovers
the bit errors/retransmisison failures over the wireless link,
and does not recover the failure because of UE getting out of
sync with eNodeB cell (RLF scenario). Moreover, RLC ACK
mode has very short timer value (default value of 45msec[22])
and cannot recover the failure when radio recovery procedure
takes long.



To address this issue we create a test case in which EMM layer
requests RRC layer for the notification of its piggybacked
request. If RRC is not able to deliver the piggbacked message
within a couple of seconds, the EMM layer will re-send the
packet.

4 LTE TESTING EFFICIENCY

We first discuss inefficiencies on running LTE test cases and
later put forward graph based test case execution methodology
to address these inefficiencies.

4.1 Limitations and Challenges

Testing limitations and challenges arise during test cases
scheduling, and their execution.

Test cases scheduling Protocol conformance testing vali-
dates whether a device complies with LTE protocols specifi-
cations or not. Each protocol supports a number of functions
that logically separates one protocol from the other. For ex-
ample, the main functions of Radio Resource Layer (RRC)
protocol are establishing, configuring, maintaining and termi-
nating the device wireless connectivity with LTE base station.
Similarly, LTE EPS Mobility Management (EMM) protocol
supports functions related to mobility of UE, that include de-
vice registration, authentication and security, location update,
and deregistration with the LTE network. Each protocol func-
tion is further divided into multiple test cases, which supports
multiple operations that further executes a number of steps.
Figure 8 shows an example of EMM protocol Attach function
that has several test cases. Each test case performs several
operations, which finally execute test steps. In current testing
practice, all test cases from a particular function must finish
before test cases from other function could start. However,
we find that these functions are independent from each other,
their pre-conditions are different and do not overlap with each
other. We take an example of test cases that validate two
different functions (i.e. device Attach and Tracking Area Up-
date (TAU) functions) of same protocol (i.e. EMM protocol).
Device Attach function is responsible of device registration
with the network, whereas the TAU function provides new
device location to network when its location has changed. To
initiate EMM protocol’s Attach related test cases, the device
must be deregistered; whereas to initiate EMM protocol’s
TAU related test cases, the device must be registered and its
location should have been changed. We argue that two inde-
pendent functions can be executed in parallel (such as EMM
protocol’s Attach and TAU functions), which is not currently
supported by 3GPP (inefficiency 1).

Test case execution Protocol conformance testing certifies
that each protocol function is executed for all possible us-
able conditions. To test each such condition, 3GPP defines
a new test case that ensures correctness in terms of the sig-
naling flow and content of each message. However, all such

Operations | Steps Time
(sec.msec)

Power off 00.00 Power off Power
Power Power on 34.002 Power on
RRC Connection Req 34.009 RRC req
RRC RRC Connection setup 34.104 RRC }—>{ RRC setup
RRC Connection complete |34.147 Auth req RRC comp
Authentication Request 34.150 Auth resp [
Security Authentication Response 34.285 Secure)
Security Mode Command | 34.288 Secreq
Security Mode Complete 34.428 Sec comp
ESM ESM Information Request  |34.459 ESM ESM req
ESM Information Response |34.770 ‘attch acat ESM resp
tach Attach Accept 35455 %
Attach Complete 35.486 ttch comp

Table 3: Time taken for each step in one of Figure 7: Graph data structure
LTE Attach test case of test case execution

test cases execute repetitive operations, whereas a test opera-
tion pertaining to test condition is only sufficient to execute.
For example, Aftach function is validated for two different
types of device identities (i.e. GUTI, and IMSI). These are
test conditions for which two separate Attach test cases are
defined (Test case 1 and Test case 2 in Figure 8). Both test
cases validate the Attach operation when “Valid GUTI" is
passed as a test condition, or “IMSI/GUTI reallocation” is
set as a test condition. But we see that both these test cases
perform a number of repetitive operations (such as Power,
RRC, Security, and ESM) that are not related to test condition.
As aresult, test case 2 (Figure 8) executes (i.e. exec()) 63%
redundant steps which are already performed by test case 1
(Figure 8) (inefficiency 2).

4.2 LTE Testing as a Graph Data Structure

We make LTE testing efficient through graph data structure
approach.

Overview of our solution We view test case execution as
a graph data structure, where graph non-leaf vertices repre-
sent protocol operations and leaf vertices represent the steps
that protocol operations take, as shown in Figure 7. We aim
to reduce the execution of those test steps which are common
among different test cases of a protocol function (mitigating
inefficiency 2). We let all test cases of a particular protocol
function to execute one-by-one on single graph data structure.
As an operation step executes, we record its complete execu-
tion information in memory, such as its output parameters. By
doing so, we can find whether non-leaf vertex was previously
visited or not. If it was previously visited then we retrieve
the output of that operation steps from memory and move to
next operation without executing already executed steps. Note
that, we are not aiming to skip any operation step, rather to
skip operation steps execution by retrieving their last execu-
tion output parameters. Furthermore, we change current test
cases execution practice by allowing test cases from different
protocol functions to co-execute (alleviating inefficiency 1).

Savings To quantify efficiency of our approach compared
to contemporary testing approach, we execute LTE Attach
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Figure 8: Most of the test case steps are repetitive among test functions. Each
LTE protocol (EMM protocol in the Figure) tests a number of test cases (test case
1 and test case 2) that belong to particular LTE function (LTE Attach function).
These test cases perform a number of operations (power cycle, RRC, security,
etc.). These operations further execute a number of steps (RRC Reques, RRC
Setup, RRC Complete etc.)

related test case over Anritsu test simulator[23]. Table 3 cap-
tures time taken by each step during LTE Attach test case.
Overall LTE attach test case takes 35 seconds and 486 mil-
liseconds to execute. If we avoid repeating only device power
off/on steps for following 56 Attach related test cases then we
can save roughly 31 minutes. If we further avoid repeating ex-
ecution of RRC, Security and ESM related steps then our test-
ing time decreases from 1.486 seconds to merely about 0.031
seconds for each of the following Attach test case. Hence, in
total, our approach has potential to decrease Attach related
test cases (for example) from 33 minutes to 37.222 seconds,
which is 53.66X (5366%) steps execution time savings. In
this paper, we discuss test case efficiency in terms of number
of steps; the lower number of steps a test case execute, the
faster it runs.

Contributions We make two contributions. First, to
achieve test case efficiency, we reduce test steps execution by
reusing the results from those finished test cases. Second, we
enable concurrency between different test cases and execute
concurrent test cases in parallel to speed up the execution.

4.2.1

In test cases optimization, we first initialize a graph that rep-
resents all the test cases of a protocol function. Then we
perform graph traversal and avoid re-executing common op-
eration steps.

Optimizing test cases

10

Graph initialization Graph initialization is performed at
the beginning of testing. It is a procedure that maps the test
case to a graph representation. There are two major things
done in graph initialization.

o Create the graph non-leaf vertices. Each non-leaf vertex

represents an operation.
e Add leaf vertices to a non-leaf vertex. Each leaf vertex

represents a step of an operation.

Since the purpose of the graph representation is to represent
all test cases of a protocol function, repetition of common
graph vertices is avoided as early as in the initialization phase.
If a particular test operation performs an extra step (for ex-
ample RRC Connection Release, other than performing three
RRC steps — RRC Connection Request, RRC Connection
Setup, and RRC Connection Complete), this step must be
added with original operation (RRC) rather than creating a
new RRC vertex with just one step. Such an approach provides
a compact representation of graph data structure, reducing
memory and space utilization and computation.

Graph traversal Graph traversal starts as soon as first test
case of a protocol function executes. For the first most test
case, all leaf and non-leaf vertices are executed. During such
execution, each leaf vertex reports its execution parameters
to associated non-leaf vertex. The non-leaf vertex mark itself
visited and store reported parameters.

For each non-leaf vertex i we store an array of the vertices
(its leaf vertices) adjacent to it. Each array element represents
the reference to a character array that contains all param-
eters produced during test operation step execution. After
the execution of first most test case, the second test case
of same protocol function starts executing. The second test
case is most probably executing the same set of operations
as executed by first test case. However, one or two protocol
operations are required to be re-executed because the test con-
dition has changed. Therefore, simply looking at the mark
field to know whether the operation was previously executed
or not is misleading. For example, Attach with valid GUTI,
and Attach with IMSI are two different test cases but perform
mostly same operations (RRC, Security, ESM, and Attach
operations, as shown in Figure 8), where they only differ at
Attach operation execution. To address this issue we leverage
domain knowledge and identify the operation(s) which are
pertaining to the test case.We can do so by looking test case
conformance requirements that describe why test is being
executed and which protocol operations will be impacted. For
example, both Attach with valid GUTI, and Attach with IMSI
require the Attach operation must be validated under two
different conditions (i.e. GUTI and IMSI). Therefore, even
though Attach operation is marked by first test case as exe-
cuted, we are required to re-execute the operation. To achieve
this, we modify our implementation by first creating an hash



value of the test condition, and then associating all those leaf
vertices of the operation that corresponds to the test condition
with that hash value. Therefore, for each non-leaf vertex i
the array of the vertices (its leaf vertices) adjacent to it are
represented by hash value of the test condition.

Let’s say that Attach with valid GUTI was the first most
test case that has finished its execution. Now the second test
case, say, Attach with IMSI starts its execution. We know
that the hash value of the condition (IMSI) corresponds to
Attach operation. Therefore, the running test case retrieves
the RRC, Security, and ESM operations steps parameters from
memory instead of executing these operations’ steps and move
to Attach operation. At Attach operation, the test case searches
whether hash value of the condition (IMSI) exists or not. As
it does not exist, the test case will execute all the steps of the
Attach operation and proceeds to the next operation (if any).

Note that storing the leaf vertices and their parameters
with different hash conditions may grow the memory size.
To address this, we limit the number of test cases that can
be traversed over a single graph. We can do this because
there are a number of independent test cases within a same
protocol function. For example, the Azfach function supports
attach related test cases under three different scenarios, i.e.
attach/success, attach/failure, and attach/abnormal having 17,
23 and 11 test cases, respectively[1]. Therefore, the graph data
structure testing Atfach function only needs to store operation
steps parameters associated with 23 different conditions.

Parallelizing test cases We parallelize mutually exclusive
test cases to speed-up the overall testing time. The mutually
exclusive test cases are those which are testing different test
scenarios and do not share the testing condition, variables, and
results with each other. We adopt two step procedure (1) en-
abling test case concurrency, and (2) running concurrent test
cases in parallel. The first step is relatively simple and taken
before test cases are executed. We feed complete list of test
cases to our program which uses swiftch() statement to differ-
entiate test cases based on their three different scenarios (i.e.
success, failure, and abnormal). Test cases of same scenario
are grouped together. In second step, we execute test cases
belonging from three different scenario in parallel. We adopt
process-oriented programming approach, based on ideas de-
rived from CSP (Communicating Sequential Processes)[24],
to achieve this. Each processes is a separate pieces of code
which is independent from other process(es). Such program-
ming approach does not create race hazards involving shared
data or scheduling corner-cases, and deadlocks.

S IMPLEMENTATION

Our implementation includes 3GPP test cases implementation,
implementation of our proposed algorithms, and creation of
FSMs and their representation as finite automaton, generating
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complete sets of test cases by excluding don’t care output
device outputs. Our implementation is highly modular with
the focus of code re-use.

Test cases and their execution For 3GPP test case imple-
mentation, we implement RRC, EMM and ESM test cases as
described in 3GPP specification 36.523-1[1] section series 8,
9 and 10. We carefully implemented each test cases by follow-
ing the test case procedure described in the specification and
executed the test as a message sequence between device and
NS. The device and NS are two processes running in Linux
machine. The device generates a message for NS, where NS
generates the response (as described by 3GPP specification)
by following pre-defined behavior. In case, the device does
not receive a response from NS (which is usually the case in
our protocol interaction testing) then we mark it as vulner-
able/missing test case and manually confirm it with 3GPP
test standard, as well 3GPP protocol specifications. Before,
each test starts running, our program takes a set of configura-
tion defined from a number of config files as required by test
case. We create different config files representing different
purposes, such as preamble.config, cells.config, timers.config,
ie.config, representing test start states, cells related config,
timers and their values, and information elements including
device capabilities, respectively.

Finite state machine The test case is executed such that
the execution is captured as a transition between different
states. Such an implementation choice is important to first
represent test cases as a finite automaton, and then generating
new test cases for protocol interaction. The current states,
next states, and transition conditions are enum type values.
For each state, the set of valid state transitions are stored as
a multimap. The transition function is an action that current
state performs and transitions to next state. The action is basi-
cally a callback function that tells what steps the UE should
perform and for which next state (ActionCallbackFunc call-
back = stateTransition[std: :pair(current_State, next_State)]).
Using this logic, we can easily represent our FSM as a finite
automaton. In finite automaton, the current state is allowed to
have more than one transition (DFA or NFA).

We modify the Hopfcroft algorithm code provided by Antti
Valmari[25] and defined contradictory states as like equivalent
states.

Protocol Interaction Protocol interaction is represented as
test cases collision and their interaction (with/without delay),
where each test case represents either same or two different
protocols. Such interaction has to be tested on each valid out-
put value (in any sequence). To implement this, the messages
that a test case produce during testing, as well as their corre-
sponding responses are put in the queue. The execution of this
test case is basically what the 3GPP testing standard mostly
tests (single protocol interaction). To find protocol interaction
vulnerabilities, we let messages from two protocols interact
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with the NS and then observe the behavior. Each vulnerability
that we find was manually verified in 3GPP protocol specifi-
cations. For each vulnerability, we propose a new test case
that describes the procedure (by detailing the test steps) and
the fix (the expected behavior).

6 EVALUATION

6.1 Completeness

To evaluate test cases completeness, we are mainly interested
to find that how many number of states our algorism reduces
when compared with best known finite automaton algorithms.
We also want to know how many new test cases we can find
without enumerating all possible output sequences (results
are discussed in| Section 3.5, Table 1 |. [Section 3.5] also pro-
vides detail evaluation analysis). For algorithms comparison,
we vary total number of NFA states from 100 states to 500
states and assuming half of these states have 1 transition
condition. In Section 3.3.1, we discuss that in LTE most of
NFA states have only 1 transition condition. Table 4 com-
pares our algorithm with Robins and Scott algorithm on NFA
to DFA conversation. Robins and Scott algorithm converts
all NFA states to DFA, therefore, the number of steps and
states are always exponential to total number of NFA states
(which is being converted). After powerset conversion, the
algorithm converges by removing unreachable states and op-
timal number of states can be obtained. However, the power
set conversion at the first step is the major bottleneck. On
the other hand, our algorithm only converts those NFA states
which have 1 transition condition. We can reduce 1/3 of these
NFA states on average. Our algorithm makes NFA to DFA
conversion linear through selective state conversion at the
cost of just 10% more states.

Table 5 compares Hopcroft DFA minimization algorithm
with our proposed algorithm. The Hopcroft algorithm does
not work on NFA-DFA mixed FSM, therefore, we only show
DFA states in Table 5. The Hopcroft algorithm cannot get
benefit from constraints between different states, whereas,
our algorithm reduces more states by considering states con-
straints. We find that we can reduce more number of states by
adding fewer constraints in the FSMs (as depicted by Figure
12). Table 5 shows that we can reduce 26% states by adding
just 20% constraints. Further, our algorithm only performs
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10% more steps than Hopcroft algorithm, where it skips NFA
minimization (which is an NP complete problem), and merges
those states which have constraints (treating them as equiva-
lent states).

Table 4: Our algorithm comparison with Robin and Scott algorithm

States Robin and Scott Algorithm | Proposed Algorithm
NFA 1 DFA | Steps | States| Optimal Steps | Reduced Total
(To- Trans (To- States DFA States
tal) NFA tal)
100 |50 100 [ 2% [ 270 {167 600 | 34 184
200 100 200 2500 [ %0 1334 1381 | 67 367
300 150 300 [ 2590 | 2899 [ 500 2230 | 100 550
400 [ 200 400 | 2500 2500 1667 3123 | 134 734
500 | 250 500 | 21000 | 2T000 ["g34 4049 | 167 917

Table 5: Our algorithm comparison with Hopcroft algorithm

States Hopcroft Algorithm | Proposed Algorithm
DFA Equivalent | Constraints | Steps | States Steps | States
(Total)
100 50 20 400 | 75 440 | 56
200 100 40 921 150 1013 | 111
300 150 60 1487 | 225 1635 | 166
400 200 80 2082 | 300 2290 | 221
500 250 100 2699 | 375 2969 | 276
6.2 Efficiency

We measure the efficiency of a test case as the number of
steps it executes. The rationale is that every test case consists
of a number of test operations where every operation is ex-
ecuting a number of steps. Because these test steps execute
sequentially (one after the other) in a test case, their execution
time reflects into testing time. We show that we can efficiently
execute LTE test cases by executing them in a systematic way.
Table 6 shows the test case execution comparison between ad-
hoc way of testing (as used by LTE standard) and systematic
way of testing (through our solution). First, we see that our
approach executes 43%, 11%, 70% and 50% less number of
steps for Attach, Detach, TAU, and Service Request functions,
respectively. This is because, graph data structure shares a
test case execution knowledge with all other test cases. We
did not save much in Detach function, because these tests
either require the device to reboot or USIM to be removed.
Therefore, our graph data structure cannot hold the informa-
tion about previous test cases and all the steps in the new test
case have to be re-executed. The saving from Attach function
comes because our algorithm does not always execute the
reboot device steps, unless explicitly mentioned by the test



case. In TAU function our algorithm executes 34 number of
TAU related steps compared to 375 steps execution by 3GPP
standard. We find that most of TAU steps (including same
tracking area code, and other configurations) are repetitive
and their execution can be avoided by simply retrieving the
execution outcome from the memory.

Figure 9, Figure 10, and Figure 11 show the number of
steps taken at different test cases belonging to Attach, TAU
and RRC functions, respectively. We can see that Aftach func-
tion can be split into 6 independent test case scenarios, mak-
ing their parallel execution possible. Similarly, TAU and RRC
functions can be split into 3 and 5 test case scenarios, re-
spectively, which can also execute in parallel. The Detach
and Service Request functions (not shown in the Figure) do
not offer any parallelism. Note that in Detach function, “UE
initiated" and “network initiated" detach test cases cannot be
separated because UE needs to be physically rebooted. How-
ever, there is no much gain even if we are able to parallelize
these functions. This is because Detach and service request
have only 12 and 10 test cases, respectively, compared to 51,
56 and 114 test cases for Artach, TAU and RRC functions.

Table 6: Comparison of number of steps without (original in test case standard)
and with our optimization approach (based on graph data structure)

Steps Before Optimization Steps After Optimization
Operation Attach | Detach | TAU | SR | Attach | Detach | TAU | SR
Power Off/On 118 13 20 10 | 46 12 8 10
RRC 465 54 186 | 94 | 254 46 70 35
Security 216 40 164 |28 140 32 60 16
ESM 100 14 54 12 | 68 14 26 8
Attach Req 195 13 68 16 | 65 11 15 7
Attach Success 130 18 70 28 | 68 16 34 8
Attach Reject 50 1 1 NA | 47 1 1 NA
Detach 42 36 24 16 | 36 36 24 16
TAU 52 15 375 10 | 47 12 34 6
Identity Req/Resp | 2 2 NA |[NA |2 2 0 NA
Service Reg/Resp | 8 2 20 26 | 4 2 16 14
Total 1378 208 982 | 240 | 777 184 288 | 120

7 RELATED WORK

We are unaware of earlier work that has either discussed effi-
cient execution of LTE test cases or provided a methodology
to generate complete set of test cases. Closest to our work
are those that discuss cellular protocol interactions, such as
[26], [27] and [28]. Both [26] and [27] disclose performance
issues in operational LTE network. They discuss 3G and 4G
interaction issues and do not provide LTE protocol interaction
analysis in general. [27] discusses LTE performance related is-
sues due to ARQ-HARQ protocols interactions. Other works
[29][30] discuss practical attacks in LTE network. In contrast,
our work argues that problems reported by LTEInspector[29]
and [30] will not occur if LTE testing is complete. [31][32]
discuss importance of performance related test cases and pro-
vide LTE performance results. [33] performs fuzzing tests
to identify LTE RLC vulnerabilities, whereas [34] discusses
energy and delay analysis on RACH performance. All these
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works have either provided new ways of LTE testing or dis-
cussed LTE performance issues. However, in our work, we
discuss making LTE testing more time efficient by reducing
number of execution steps, and provide a methodology that
can generate complete set of LTE test cases.

Other relevant works are related to wireless and net-
work protocol testing[35][36][37], testing using model
checkers[38][39][40], and test cases generation by learning
queries[41] and finite state machines[42][43]. [35] solves run-
time wireless protocol validation by sniffing wireless trans-
mission first and later adding nondeterministic transitions to
incorporate uncertainty. Their technique cannot solve the NP-
completeness coming from searching and uses heuristics to
limit the search. [36] and [37] discuss model based approach
for NFV testing and network fault detection, respectively.
Both approaches model the network nodes as FSMs and gen-
erates test traffic for FSM execution. However, [36] and [37]
fail to provide complete list of test cases and do not discuss
the efficiency of their approaches. [38] and [39] verify the
state-space exploration. They either require constraint metrics
as input or require to search all system states. In this paper, we
discuss that finding all possible inputs are practically not fea-
sible for LTE testing. [40] uses model checking to find TCP
implementation bugs, whereas, our approach does not aim to
find implementation bugs. Angluin seminal work[41] learns
test cases through learner and teacher interaction. Contrary
to [41], we do not require the device to learn by interacting
with the network, rather, our approach finds valid input values
through device FSM transitions. [42][43] solve the nondeter-
minism of FSM by keeping the input alphabet small, whereas,
our approach does not constraint the input alphabet.

8 CONCLUSION

We present the first methodical approach to LTE testing. We
provide complete list of test cases by considering multiple
protocols interaction, and exclude those test cases whose
corresponding output message combinations are not generated
in protocols interaction. We also optimize LTE test cases by
avoiding re-execution of repetitive steps among different test
cases.

Future work In future, we will consider other test case
scenarios which are being developed for 5G networks, such
as LTE-WiFi co-existence, test cases with micro base stations,
and others.
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