Session: Living on the Edge: Mobile Systems at the Network's Edge

MobiCom’18, October 29-November 2, 2018, New Delhi, India

SWAN: Stitched Wi-Fi ANtennas
Yaxiong Xie, Yanbo Zhang, Jansen Christian Liando, Mo Li

School of Computer Engineering, Nanyang Technological University, Singapore
{yxxie,zhang.yanbo,cjansen,limo}@ntu.edu.sg

ABSTRACT

This paper presents our experience in designing, implement-
ing, testing, and applying a general-purpose antenna exten-
sion solution with commodity Wi-Fi. The proposed solution,
SWAN, builds an array of stitched antennas extended from
the radio chains of commodity Wi-Fi. SWAN has low hard-
ware cost and provides easy-to-use interfaces embedded in
the Linux kernel. Two application cases for wireless sensing
and communication are presented that proves the usefulness
of the solution. SWAN is able to provide over 3X performance
improvement on Wi-Fi azimuth estimation and localization
and over 30% improvement on Wi-Fi throughput over origi-
nal Wi-Fi AP with three fixed antennas.

CCS CONCEPTS

« Networks — Wireless access points, base stations and
infrastructure;

KEYWORDS

Antenna Extension, MIMO, Localization, AoA Estimation,
Antenna Slection, Antenna Switching, Spatial Diversity

ACM Reference Format:

Yaxiong Xie, Yanbo Zhang, Jansen Christian Liando, Mo Li. 2018.
SWAN: Stitched Wi-Fi ANtennas. In The 24th Annual International
Conference on Mobile Computing and Networking (MobiCom ’18),
October 29-November 2, 2018, New Delhi, India. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3241539.3241572

1 INTRODUCTION

An array of many antennas helps a wide range of wireless
sensing and communication applications, e.g., a phased-array
antenna enables RF sensing system to estimate the signal
azimuth with higher resolution and better accuracy [17, 51],
which further supports many applications including indoor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

MobiCom ’18, October 29-November 2, 2018, New Delhi, India

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5903-0/18/10...$15.00
https://doi.org/10.1145/3241539.3241572

RIGHTSE LI MN iy

51

localization, passive tracking, activity recognition, etc. Com-
munication also benefits from the spatial diversity or multi-
plexing gain provided by a large antenna array, e.g., antenna
selection significantly improves the communication through-
put of MIMO systems.

Most commodity Wi-Fi network interface cards (NIC),
however, only support three antennas (some Wi-Fi APs have
five or six antennas but they are separately used for 2.4 GHz
and 5 GHz radios). Increasing the antenna number results in
increased design complexity, and thus, high cost. While the
antenna elements (either printed or external antennas) them-
selves are usually inexpensive, the RF components of the
radio chains, including low-noise amplifiers, downconvert-
ers, analog-to-digital (ADC) or digital-to-analog converters
(DAC), are expensive and they do not follow Moore’s law.
The digital processing complexity also increases exponen-
tially with the antenna number [16, 43], e.g., BigStation [56]
has to shift the basedband computation to PC software us-
ing software-define-radio and requires 15 PCs to support
real-time signal processing of 12 antennas. A many antenna
Wi-Fi NIC, therefore, requires extremely high speed base-
band processor, and thus high hardware cost.

While tremendous efforts have been made to building
many antenna systems, most of those efforts focus on build-
ing specially purposed systems like large scale MIMO [8,
16, 33, 43, 49, 56], full-duplex communication [5, 40, 44],
synthetic aperture radar (SAR) [1, 27, 38], and with spe-
cial hardware support [7, 49] or software-defined-radio plat-
forms [43, 47]. Few studies have been performed with com-
modity Wi-Fi. Phaser [11] is a recent attempt to build large
phased-array on commodity Wi-Fi by combing multiple 3-
antenna Wi-Fi NICs. Phaser makes use of the radio chains
of multiple Wi-Fi NICs and by doing that introduces signifi-
cant hardware cost - more radio chains than antennas are
used in Phaser (one radio chain from each of those NICs is
connected with each other for synchronization purpose and
thus wasted). Phaser is a special purpose platform dedicated
to angle-of-arrival (AoA) estimation. Since the NICs are on
different Wi-Fi APs, they do not work cooperatively as a
cohort to provide general Wi-Fi communication services.

In this paper, we propose SWAN (Stitched Wi-Fi ANten-
nas) as a low-cost general-purpose antenna extension to
commodity Wi-Fi. Instead of including more radio chains or
NICs which are expensive, we provide an array of stitched
antennas extended from the original three radio chains of the

Session: Living on the Edge: Mobile Systems at the Network's Edge

Wi-Fi AP. The antennas are stitched with RF switches, and
the AP is able to configure the RF switches to select a com-
bination of antennas for transmitting or receiving a packet.
All components are connected through standard hardware
interfaces and work in a plug-an-play mode, without any
hardware modifications at the AP side. The total hardware
cost of SWAN including antennas, RF switches, an external
Arduino board for control, etc., is below $100. We show that
SWAN can be easily scaled to support tens or even hundreds
of antennas to one commodity AP.

SWAN also provides a set of general user programming
interfaces embedded in the Linux kernel of the Wi-Fi AP.
SWAN follows the general Wi-Fi transmission and reception
procedures in Linux kernel so the users of SWAN can simply
use existing socket interfaces. At the same time, SWAN al-
lows its users to configure the antenna combinations to send
and receive packets through simple descriptors. The control
details for accurately and swiftly configuring RF switches as
well as annotating packets are made transparent to the users
of SWAN. The code of SWAN is public[30]. SWAN devises
special solutions to the challenges that arise from the sys-
tem requirement in fast control exchange as well as reliable
packet annotation, the effectiveness of which are evaluated
with experiments on our 12-antenna SWAN prototype.

Being a general purpose platform, SWAN allows easy
scripting to task underlying APIs to support different user
applications. In this paper, we describe our experience in
using SWAN for two application cases: (1) We build a virtual
phased-array and form a circular array for wireless azimuth
estimation and indoor localization; (2) We build a MIMO com-
munication system with antenna selection that harnesses
spatial diversity to improve throughput. Our experiment re-
sults show significant improvements brought by SWAN to
the performance of both application cases.

The rest of the paper is structured as follows. We start
with the design of SWAN in §2. §3 and §4 present our expe-
riences applying SWAN to building a virtual phased-array
for wireless sensing and to improving MIMO communica-
tion with antenna selection, respectively. § 5 illustrates how
SWAN can scale to support a large number of antennas. §6
discusses related works in the field. §7 concludes this paper.

2 SWAN DESIGN

We introduce the detailed design of SWAN. We begin with
the architecture and hardware design, followed by the user
interface and workflow of SWAN.

2.1 Architecture

Architecture. SWAN extends the antenna array of commod-
ity AP by connecting each radio chain to multiple antennas
through RF switches, which features a plug-and-play mode.

RIGHTSE LI MN iy

52

MobiCom’18, October 29-November 2, 2018, New Delhi, India

(a)

Extended array

Extended 12-antenna array
| PE42442 WPJ558

Prad
Arduino.’I—’r",
: A < usB
Ethernet

Figure 1: (a) The architecture of SWAN. (b) A prototype
built with a WP]558, three PE42442 RF switches and
an Arduino board.

Figure 1 (a) illustrates the architecture of SWAN based on
single pole four throws (SP4T) RF switches as an example.
Specifically, each of the three radio chains of the AP is con-
nected to four antennas through SP4T RF switch using coax-
ial cable (RG50) and a 12-antenna array is thus obtained.
SWAN uses an external micro-controller (MCU) that con-
nects to all RF switches and controls the antenna switch
through GPIO. Finally, the external MCU is connected to
the AP through Ethernet cable which enables the control
exchange between the AP and the MCU. For each radio chain,
the AP is able to pick up any one out of the four antennas to
transmit or receive a Wi-Fi packet, which gives 4 X 4 x 4 pos-
sible antenna combinations for configuring the three radio
chains. The AP configures the selected antenna combination
and signals the MCU to switch the three SP4Ts to connect to
the selected antennas for packet transmission and reception.

The system can easily be scaled to a larger array of anten-
nas by applying higher split RF switches (e.g., using SP8T for
eight throws, which gives us 8 X 8 X 8 antenna combinations),
or cascaded connection of multiple RF switches (which we
will detail in Section 5).

Hardware. We build a SWAN prototype with commercial-
off-the-shelf (COTS) and low-cost hardware, as shown in
Figure 1 (b). The hardware used can be easily replaced with
other general COTS substitutes of similar functionality.

We test with two different AP models - COMPEX WPJ558
and TP-Link WDR4300 (cost ~$67). The SP4T RF switches
used are Peregrine PE42442 (cost ~$1.32), which provides fast
switch speed, i.e., 225ns, low signal loss, i.e., 0.8 and 1.0 dB in
2.4GHz and 5GHz respectively, and high linearity, i.e., 58dBm
1IP3 and 110dBm IIP2 [18]. We use an Arduino board (cost
~$22.9) to serve as the external MCU with its GPIO to control
the PE42442 switches. Specifically, we connect two GPIO pins
of the Arduino to a two-pin voltage CMOS control interface
of PE42442. Arduino MCU controls PE42442 by changing
the voltage state on the two control pins. The Arduino board

Session: Living on the Edge: Mobile Systems at the Network's Edge

is powered via USB from the AP and connected through an
Ethernet cable to the AP for control exchange. All hardware
and interfaces are standard and no modification is required to
the AP or Arduino board. The total hardware cost including
the antennas and all wirings is below $100.

2.2 User Interface and Workflow

SWAN provides an in-kernel user interface that allows users
of SWAN to configure the antenna combinations for transmit-
ting and receiving each individual Wi-Fi packet. We detail
the user interface and the workflow of transmission and
reception in the following.

Transmission flow. SWAN follows the normal packet trans-
mission flow of Linux kernel. In addition, SWAN allows as-
sociating each packet with a 3-byte descriptor ant-comb to
indicate which antenna combination is to be used to transmit
the packet. Each byte of ant-comb indicates the antenna to
use for one radio chain. The value of ant-comb descriptor is
set by the user application when generating the Wi-Fi packet
and the antenna combination is thus selected (otherwise the
default antenna combination will be used).

Since the Wi-Fi NIC takes a period of time to gain the
channel access before transmitting the packet, SWAN makes
use of that time interval to signal the choice of antenna
combination to the Arduino MCU and switch the antenna
accordingly before the actual transmission of every packet.

Figure 2 (a) illustrates the workflow for transmitting a
packet in SWAN. Wi-Fi NIC prepares a transmitting queue
(TX-PKT Queue in Figure 2 (a)) to buffer all data packets de-
livered from Linux kernel and pending to be transmitted. To
track the packets that have been delivered to NIC, common
NIC drivers in the kernel (e.g., ath9k for most Qualcomm
chips) assign a unique frame ID for every packet, e.g., tx_-
desc_id in ath9k. SWAN thus, maintains an in-transmission
packet queue for all packets ath9k has delivered to NIC,
where each entry records a frame ID tx_desc_id as well as
its antenna combination ant-comb. When NIC successfully
transmits a packet, an 802.11 ACK frame will be received
and in the interrupt request (IRQ) handler of 802.11 ACK
frame, SWAN does two jobs — (1) to dequeue the relevant
record for the transmitted packet as normally done in ath9k
IRQ procedure, and (2) to obtain the antenna combination
descriptor for the next packet and send it to the Arduino.
The Arduino MCU then configures the RF switches before
the next packet is on its way to the antenna.

When the transmission of one packet in the NIC queue
fails, an interrupt is still triggered by the NIC. SWAN de-
queues the failed packet from the in-transmission packet
queue according to the frame ID. If a packet is passed to
ath9k when the in-transmission queue is still empty, i.e., no
prior packet is buffered in the NIC, SWAN still enqueues its

RIGHTSE LI MN iy

53

MobiCom’18, October 29-November 2, 2018, New Delhi, India

(a) Transmission workflow

TX-PKT Queue
Enqueue
q—b Frame ID N|ant-comb N ACK IRQ handler
Send to Arduino
TFrame 1D 3 |ant-comb 3 J" b2
Control plane Frame 1D 2 |ant-comb 2 -
Frame ID 1 |ant-comb 1 }&=1— FrameID 1
L e
fram
Data plane NIC FIFO Queue ame
Wi-Fi NIC hardware Tx path Rx path

(b) Reception workflow

config_rx_ant() Engueue
RX-ANT Queue

ant-comb N

Interrupt Data frame

wi-rine |
hardware Rxpath

Data IRQ handler

4—| Ant tagging

Data frame

Send to Arduino
——

ant-comb
of next pkt

ant-comb 2
ant-comb 1

Control plane ant-comb
of prev pkt

(Frame, ant-comb) ¢

Dequeue
—>

Data plane

Figure 2: The workflow of (a) packet transmission and
(b) packet reception of SWAN.

frame ID and ant-comb but immediately sends the antenna
combination to the Arduino without waiting for the ACK
interrupt triggered by the successful reception of last packet.

Reception flow. SWAN follows the packet reception flow
of Linux kernel, but provides additional functionalities. Fig-
ure 2 (b) illustrates the workflow for receiving a packet in
SWAN. First, SWAN tags a 3-byte descriptor ant-comb to
every received packet, which annotates the antenna com-
bination used to receive the current packet. The ant-comb
descriptor can be extracted by users of SWAN to facilitate
various application purposes. Second, SWAN adds a control
interface config rx_ant() in the NIC driver for setting a se-
quence of receiving antenna combinations. Specifically, a
receiving antenna queue (RX-ANT Queue in Figure 2(b)) is
constructed where each entry gives an ant-comb indicating
the antenna combination to receive the packet.

In the IRQ handler of each received data packet, SWAN
does two jobs — (1) to examine the actual antenna combi-
nation used to receive the packet and annotate the packet
with the ant-comb descriptor, and (2) to decide the antenna
combination used to receive the next packet and send it to
the Arduino. SWAN decides the antenna combination based
on the next user defined ant-comb in the receiving antenna
queue. The entry is dequeued when a successful packet is re-
ceived using that antenna combination. If the queue is empty,
the default ant-comb is used for receiving new packets.

Challenges. The designed user interface and workflow en-
sures correct control logic in SWAN to operate the stitched
antennas. In order to make the solution practically feasible,
however, we face two challenges. First, SWAN requires fast

Session: Living on the Edge: Mobile Systems at the Network's Edge

control exchange between the AP and the Arduino to achieve
ps-level antenna switch. This is necessary to accommodate
the antenna switch within short Wi-Fi transmission and re-
ception intervals. Second, SWAN requires reliable packet
annotation, i.e., the antenna combination ant-comb applied
to each packet is accurate. There are several ways that could
lead to wrong antenna configuration in SWAN, e.g., failures
in switching the antennas due to the lost of control com-
mands, or delayed antenna switching that results in incor-
rect antenna combinations used to transmit or receive the
target packet. In the following sections, we will detail our
techniques to address the two challenges.

2.3 Fast control exchange

Time stringency. 802.11 Wi-Fi transmission and reception
impose stringent time requirement on antenna switching.
Wi-Fi adopts CSMA where the shortest time interval from
sensing the idle channel to transmitting or receiving the next
packet is DIFS = 34 pus (Figure 4 illustrates a Wi-Fi transmis-
sion example). Therefore, SWAN has to signal the Arduino
and switch the antenna combination within the 34 ys DIFS
duration, to guarantee correct antenna configurations.
Maintaining a flow over the Ethernet cable between the
AP and the Arduino, e.g., TCP, is a natural choice for convey-
ing those control messages, which, however, is known time
consuming (hundreds of microseconds to milliseconds of
latency). We propose a fast control exchange method which
rides on Linux TCP sockets but bypasses all time-consuming
operations. First, the antenna combinations are finite, e.g.,
4 X 4 X 4 = 64 combinations with three SP4T switches, so a
total number of 64 repeated ant-comb control messages are
used. We thus can build template TCP sockets beforehand
and reuse them in Linux kernel without instantly construct-
ing them. Second, we bypass all TCP retransmission and flow
control procedures to save time because the Ethernet cable
directly connects the AP and the Arduino, and only serves
the control exchange between them. Third, there is no need
for parsing the TCP or IP header as SWAN is the only user
of the physical link, so we let the Arduino skip the standard
packet inspection procedure in the Linux Ethernet driver.

Packet sketcher. We build a packet sketcher to "sketch"
template packets for control exchange. We build a TCP con-
nection and then send all possible antenna combinations in
sequence, which triggers the Ethernet NIC driver (ag71xx
for Atheros AR8327N in our system setting) to construct all
relevant TCP packets and send through ag71xx_hard_start_-
xmit() to the NIC hardware. The packet is buffered in sk_buff
for each transmission. We modify ag71xx_hard_start_xmit()
of the AP to store all constructed packets as templates to sig-
nal different antenna combinations. Figure 3 illustrates the
process. Packet sketching is immediately done after the TCP

RIGHTSE LI MN iy

54

MobiCom’18, October 29-November 2, 2018, New Delhi, India

ant-comb N |

Packet sketcher

v
sk_buff —
/"
ag7lxx_hard_start_xmit() <
— |
| NIC hardware (AR8327N) | sk_buff'2
TCP connection §
-I-sk_buﬁ‘" 1

Figure 3: Packet sketching in SWAN.

Ethernet NIC driver

(Atheros ag71xx) ant-comb N

net_device

ant-comb 2

net_device

ant-comb 1

| Arduino (receiver) | net_device

connection is established and the stored packet templates
can be used as long as the TCP connection lasts.

In operation. SWAN swiftly react to the Wi-Fi packet trans-
mission or reception. The antenna combination ant-comb is
sent to the Arduino by the 802.11 ACK or data frame IRQ
handler of ath9k. Specifically, the AP’s IRQ handler directly
sends over the sk_buff corresponding to the selected antenna
combination through ag71xx_hard_start_xmit().

On the Arduino side, the Ethernet NIC stores the received
packets in a linear buffer and handles the buffer to the NIC
driver. Since SWAN is the only application running on the
Ethernet link, there are only two types of packets that are
supposed to be received by the Arduino - (1) the TCP control
packets including SYN, ACK, and FIN, which the Arduino’s
NIC driver needs to decode and then pass to the TCP stack for
maintaining the TCP connection, and (2) the AP’s command
that conveys the antenna combination ant-comb, which due
to the time limit should not be passed to TCP stack for further
inspection.

SWAN is able to distinguish the two types of packets by
solely examining their packet length. The command packet
has a fixed size of 90 bytes including 20 byte payload, and
the TCP control packet only has the fixed header and is of
70 bytes. Therefore, every time when the Ethernet driver
receives a packet, it examines the packet length and directly
extracts the antenna combination from the payload (always
at the end of the packet) without further parsing the en-
tire packet headers. By doing the above SWAN effectively
conveys control commands through the TCP pipe.

2.4 Reliable packet annotation

As we previously mentioned, the antenna configuration in
SWAN may fail due to the lost of control commands or de-
layed antenna switch that takes effect after the actual packet
is transmitted or received. It is important for SWAN to detect
such failures and feedback to its users in a reliable way, so
the users of SWAN are aware and thus able to adjust their
operations accordingly. SWAN returns an ant-comb descrip-
tor to the user application after every packet transmission or
reception, which tells the actual antenna configuration used

Session: Living on the Edge: Mobile Systems at the Network's Edge

for that packet. We use the value of 0xFFFFFF to indicate a
failed or uncertain antenna configuration.

For every antenna configuration command, SWAN re-
quires the Arduino to send back an TCP packet for acknowl-
edging the successful reception of the transmitted command.
We denote such a packet as SWAN ACK. The AP waits for the
SWAN ACK from the Arduino. The SWAN ACK is considered
not received if it does not yet arrive by the completion of
current packet transmission or reception (until the 802.11
ACK or data frame interrupt generated from the NIC chip).
Figure 4 gives an example timeline when the AP transmits
a packet. SWAN annotates each successfully transmitted or
received packet based on the relationship of the following
three time parameters: 1) the switching delay ¢;,, between
the completion of the previous packet, e.g., at t; in Figure 4,
and the completion of antenna switch by the Arduino at
t4; 2) the channel accessing interval t,. before the start of
the packet transmission or reception, as shown in Figure 4;
and 3) the air time t,;, of the received or transmitted packet.
There are four possible cases:

e Case 1: the switching delay t;,, is smaller than the
channel accessing interval t,c, i.e., t5y < tgc. In this
case, the antenna configuration is deemed successfully
done before the actual Wi-Fi packet transmission or
reception. Therefore, SWAN annotates the packet with
the expected antenna combinations ant-comb.

e Case 2: the switching delay t;,, is larger than channel
accessing interval t,., but smaller than ¢,. plus the
packet air time, i.e, t5,, < tgzc + tgir. In such a case,
the antenna switching behavior might happen in the
middle of the transmission or reception of the current
packet, so the configuration is considered failed or
uncertain. SWAN annotates the packet with OxFFFFFF
for the user application to take further actions.

o Case 3: the switching delay ., is larger than the packet
interval plus the packet air time, i.e., 5y, > tgc + Lair-
In this case, the antenna switching behavior is done
after the completion of current packet transmission
or reception, so SWAN uses the previous ant-comb to
annotate the packet. The user application may need to
take further actions with such a case.

e Case 4: in case the SWAN ACK from the Arduino is not
received, SWAN annotates the packet with OxFFFFFF.

Antenna switching delay. Directly measuring the delay
by ts, = t4 — t1 is inaccurate, since the AP and the Arduino
are not synchronized. SWAN thus divides the delay t;,, into
three parts, and measures them separately. The first two
parts are the software delay t4p at the AP side and ¢4, at the
Arduino side, which are measured according to the clock of
AP and Arduino respectively. Specifically, t4p describes the
interval that the AP takes in its kernel to prepare the control

RIGHTSE LI MN iy

55

MobiCom’18, October 29-November 2, 2018, New Delhi, India

t; t t
Arduino 3 4 5
Switching finished7L/
Command packet —, SX\::'LI\(N—\\-Timing packet
AP — —
t1t, ity tely Ly
Interrupt Interrupt W Interrupt
Wi-Fi NIC SIFS ACK DIFS Back-off Data
t tac tair
1 PT€ Reponed tokemel

Figure 4: Important time points on the timeline of Wi-
Fi transmission and packet annotation of SWAN.

command and is measured as tq4p = t, — t;. t4, describes
the time interval between the Arduino receives the control
command at #3 and performs the antenna switching at t4,
and is measured as t4, = t4 — t3. The third part is the trans-
mission delay f.;; on the Ethernet cable between the AP and
the Arduino, which involves the clocks at the AP and the
Arduino, and cannot be measured directly. SWAN makes use
of the SWAN ACK from Arduino and measures the round-
trip-time (RTT). Specifically, the Arduino measures the time
t5 it sends the SWAN ACK and uses a separate timing packet
to deliver t3, t5 and t4, to the AP, as illustrated in Figure 4.
The transmission delay over Ethernet is thus calculated as:

teen = [(te — t2) — (15 — 15)] /2 (1)
where t; is the AP’s timestamp in receiving the Arduino ACK.
The total switching delay t;,, is obtained as tap + te;p + tar.
Since the SWAN ACK is fixed, Arduino can prepare the tem-
plate beforehand. The timing packet is also prepared before-
hand, which is a TCP template packet with empty payload.
The timing parameter f3, t5, and t4, are then instantly ap-
pended to the end of the template as the payload.

Channel accessing interval. To measure the channel ac-
cessing interval t,., SWAN samples the end of previous trans-
mission or reception, e.g., t; in Figure 4, and the start of trans-
mitting the current packet, i.e., the start of transmitting the
preamble ;... The IRQ handler of ath9k logs ¢,. The Wi-Fi
NIC logs tp. of every packet it successfully transmits or
receives, and then reports it to ath9k along with the received
data frame or the ACK of transmitted frame. The channel
accessing interval is thus measured as tyc = tpre — t.

Packet air time. The air time ¢,;, of one packets consists
of the air time of the preamble and the payload. The air time
of packet preamble is known, e.g., 40 us for 802.11n packets.
The air time of payload can be calculated using the packet
payload length and the setting of the data rate.

2.5 Evaluation

Methodology. We conduct experiments with the 12-antenna
prototype that we build with WP]558 and the Arduino board,

Session: Living on the Edge: Mobile Systems at the Network's Edge

MobiCom’18, October 29-November 2, 2018, New Delhi, India

(44/:5,11.5%)

(35115,5.8%)

1 =
0.9 -
0.8}
0.7}
W 06F
gos5)
0.4
0.3
0.2}
0.1}

<—67.4s
| DIFS+preamble (74;:s)

3 ----- ACK packet
. —Timing packet

0 40 80

ol e AN R R |
0 3 6 9 12 15 18 21 24 27 30 33 36 39
Measured time delay (us)

Figure 5: CDF of measured software
delay ta,, tap, te;n and tg,,.

as shown in Figure 1. An WDR4300 Wi-Fi router is config-
ured to work as client to communicate with our prototype.
We let the SWAN AP first transmit 2 x 10° packets to and
then receive 2 X 10° packets from the client. The AP switches
the antenna combination for every transmitted and received
packet so that 4x 10° control messages in total are exchanged
between the AP and the Arduino.

Antenna switching delay. Our experiment results demon-
strate that SWAN can promptly send the control commands
from the AP to the Arduino, which ensures short antenna
switching delay t;,,. We measure the software delay t4, at
the Arduino side, the software delay t4p at the AP side, and
the transmission delay t.;; described in Section §2.4. We
sum the three delays and obtain the overall switching de-
lay t,,. Figure 5 plots the statistics of those delays from the
4 X 10° measurements. We see that the software delay ta,
and t4p are smaller than 4.0 us and 5.4 us, respectively for
90% cases, which credits to the packet sketching and fast
control exchange approaches used in SWAN. The transmis-
sion delay t.; has a 90% quantile of 22.4 ps. Therefore, the
overall switching delay t;,, is below 29.5 us for 90% con-
trol exchanges. The switching delay t,, is smaller than DIFS
(34 ps) for 98.5% cases, which means 98.5% control commands
are guaranteed to take effect in transmiting or receiving the
packet with the correct antenna configurations. For the rest
1.5% cases, we find that 89.8% of them are still successfully
transmitted or received with correct antenna configurations
since their switching delays t,, are smaller than the channel
accessing interval 4.

Channel accessing interval. The channel accessing inter-
val t,. is the time before the packet is transmitted or received
on the antennas. DIFS sets a lower bound for ¢,., but its actual
duration is much larger in statistics. We measure the inter-
val t,4. for all 4 X 10° transmitted and received packets and
plot the ¢, statistics in Figure 6. We see that, Wi-Fi selects
the back-off window size from [0,16] randomly and selects
the shortest window size 0 for only 5.8% packets. We also

RIGHTSE LI MN iy

120
Measured packet interval tpkt (us)

56

0

35 55 65 75 85
Measured time delay (us)

160 200 240 45

95 105

Figure 6: CDF of the measured chan- Figure 7: CDF of measured delay of
nel accessing interval ¢,..

the SWAN ACK and timing packet.

observe that 7.9% packets have large t,. (> 173ps), which
are caused by various reasons like packet retransmissions,
channel contention failures and so on. Overall most packet
transmissions and receptions give sufficient channel access
interval for SWAN to control the antenna configurations in
time. Over 99.8% of those packets are configured with correct
antenna combinations.

SWAN ACK delay. We also measure the delay of the re-
ception of the SWAN ACK ¢, and timing packet ¢; from the
Arduino to the AP, and plot the statistics in Figure 7. We
see that the delays are smaller than 60.3 ys and 67.4 us for
the SWAN ACK and timing packet for 90% cases. To help
better understand such delay, we compare the delay with
the DIFS + preamble = 74 us, which sets a lower bound
of the time interval before the completion of the current
packet transmission or reception (assuming back-off win-
dow = 0 and payload = 0). We see from Figure 7 that 99.0% of
SWAN ACKs and 97.8% timing packets are received before
DIFS + preamble. Therefore, the processing of the control
ACK and timing packet are less likely to interfere with the
handling of new packet transmission in the AP’s NIC driver.

Transmission | Reception | Annotation
99.78% 99.92% 99.97%
Table 1: Success rate of antenna switching and packet

annotation of SWAN.

Success ratio

Overall success ratio. We assess the overall success ratio
of antenna switching and the accuracy in packet annotation.
We let the SWAN AP communicate with the client over a
static channel and measures the CSI of each antenna as its
signature. When a packet is received, we can compare its
received CSI with all antenna signatures and figure out the
true antenna configuration used for that packet. We com-
pare the true antenna configuration with the ant-comb that

Session: Living on the Edge: Mobile Systems at the Network's Edge

the AP sends to the Arduino and derive the success ratio in
antenna configuration. We also compare the true antenna
configuration with the annotated ant-comb of each packet
derive the success ratio of annotation. Table 1 summarizes
the success ratios for transmission antenna switching, recep-
tion antenna switching, and packet annotation. We see that
SWAN successfully switches the antenna for 99.78% packet
transmissions and 99.92% packet receptions. The packet an-
notation is correct for 99.97% packets. Among the unsuccess-
ful switching cases, we further observe that the percentage
of case 4 is below 0.001% since packet transmission failure
over Ethernet cable is rare. The percentage of case 2 is be-
low 1% as switching antenna in the middle of transmitting
or receiving a packet results in packet loss for most of the
time and retransmitting the packets allows SWAN adequate
time to configure the antenna correctly. At last, around 99%
switching failures fall into case 3.

3 CASE I: BUILDING VIRTUAL
PHASED-ARRAY

Phased-array is widely used as a sensing interface to estimate
angle-of-arrival (AoA) or angle-of-departure (AoD) [3, 29, 31].
Recent advances [11, 22, 23, 26, 28, 51, 53] have built phased-
array on commodity Wi-Fi with three antennas. SWAN en-
ables a new opportunity to greatly increase the antenna num-
ber in the phased-array and thus provide angle estimation
with much finer resolution and higher accuracy.

3.1 Building virtual phased-array

We measure CSI from all antennas to obtain a virtual phased-
array. We use Atheros-CSI-Tool [50] which extracts the CSI
of all data subcarriers and collect CSI from all 12 antennas
on our SWAN prototype (12 X 56 matrix on a 20 MHz Wi-Fi
channel). Limited by the radio chains on the AP, we cannot
concurrently measure all 12 antennas. Instead we measure
the 12 antennas when receiving multiple packets and syn-
thesize the CSI matrix from individual CSI measurements.

CSI grouping. The phase error across different antennas,
however, hinders us from directly grouping CSI matrices
across packets. A phased-array must preserve accurate dif-
ference of CSI phases across antennas, which however is
impaired by the carrier frequency offset (CFO) that adds ran-
dom phase offsets to individual packets [50]. The intuition
of our solution is illustrated in Figure 8. When we measure
the CSI of first three antennas (antenna 1-3 in the figure)
with the first packet, due to CFO there is an offset e; of
the measured phases on all the three antennas from their
true phases. Nevertheless the phase differences are accurate
across themselves. When we measure the CSI of the second
three antennas (antennas 4-6), similarly our measured phases
are subject to an offset e2 # el, as Figure 8 (a) depicts. In

RIGHTSE LI MN iy

57

MobiCom’18, October 29-November 2, 2018, New Delhi, India

. (b)

e .
& "

o % o .
7} €2 . ©n T e; .
© o © o
< < e o
a " e 1st measurement a (% g @ 1st measurement

© 2nd measurement €1 © 2nd measurement

© Ground truth © Ground truth

3 4 5 1 2 3 4 5 o
Antenna Antenna

Figure 8: (a) The phase offsets of CSI from two consec-
utive measurements are different due to CFO. (b) We
cancel Ae by using a redundant antenna in both mea-
surements and align the two measurements.

order to correctly group the two measurements, we need
to remove the difference Ae = e, — e;, which however is
impractical to measure with commodity Wi-Fi [50].

We propose to cancel Ae = e, —e; by using a redundant an-
tenna in both consecutive packet measurements. As shown
in Figure 8 (b), we keep the first antenna in our antenna
combination for the second measurement (antenna 1, 4, and
5). By aligning the phase offset of antenna 1 with its offset
in the previous measurement, we align all phase measure-
ments across five measured antennas, which preserve the
phase difference across all antennas. A scheduled antenna
measurement scheme is accordingly designed to ensure one
redundant antenna included in any consecutive measure-
ments (so we obtain CSI from two new antennas in each
measurement). Script 1 gives the user application script for
the scheduled antenna measurements.

It is worth emphasizing that the antenna measurement
process can be completed within very short time. For exam-
ple, only five packets are needed to collect CSI from all 12
antennas in Script 1. Each packet takes around 190us and
the entire measurement process can be completed in less
than 1ms, which is shorter than the coherence time in many
static and mobile scenarios. Therefore, we are able to es-
timate the channel’s intrinsic characteristics like the AoA
of signal propagation paths. The theoretical upper bound
that our antenna measurement scheme can support under
various channel dynamics is derived in Section §3.3. Unlike
the time varying offsets e; and e,, the phase offsets across
radio chains are fixed and can be accurately measured by
connecting the radio chains of transceivers. We apply the
phase calibration presented in [53] to eliminate the phase
offsets introduced by radio chains.

3.2 AO0A estimation

We perform AoA estimation atop the phased-array. Uniform
linear array (ULA) is widely used because of the ease of
signal processing, but only provides a field view of 120°, i.e.,
[30°,150°], due to its linear arrangement of antennas [17].
On the other hand, uniform circular array (UCA) provides
a field view of 360° and maximize the coverage in sensing

Session: Living on the Edge: Mobile Systems at the Network's Edge

Script 1: Scheduled antenna measurement

Input: No. of antennas N, attached to each chain

1 ant-comb[3]={0} ; // 3-byte descriptor
2 m=0;
3 fori=1;i< f%] do
4 forj=0;j <3;j # mdo

ant-comb[j]++;
if ant-comb[j] > N, then

L ant-comb[j] = N,

N Y G

m=(m+ 1) mod 3;
9 config_rx_ant(ant-comb[3]);
10 [pkt;, csi;, ant-comb;] = recv_pkt()

11 CSI = [csil,csiz,...,csi[m]]; // CSI grouping
2

and signal processing. Commodity Wi-Fi AP is only able
to support the ULA due to the only three antennas. With
the phased-array built from SWAN, we adopt the UCA to
estimate AoA. Figure 9 (a) shows the 9-antenna UCA that
we build for AoA estimation.

We derive the relationship between signal phases across
antennas in the UCA. For an UCA with radius r and con-
sisting of N uniformly distributed antennas, as shown in
Figure 9 (b), the angular position of its nth antenna is given
by ng, where ¢ = 27 (&) andn = 1,2,..., N. Following the
geometry in Figure 9 (b), the steering vector of the UCA is
given by:

)

A
o rcos(2¢p—0)

c(0) = | °
it
where 0 is the AoA of an incident wave.

MUSIC cannot be applied to UCA for AoA estimation since
it cannot works with mutually coupled singals received from
antenna array. Spatial smoothing can be applied together
with MUSIC to deal with the coherent signals received from
ULA, which, however, fails for signals received from UCA.
Therefore we adopt a maximum likelihood estimation algo-
rithm that works with mutually coupled signals. If we denote
the transmitted signal as u(t), the signal received by the UCA
can be modeled as:

L
s(t) = " are(@u(t -) (3)
I=1
where L, 6, 7, and « is the number of multipath signals, the
AoA, the time of flight (ToF), and the amplitude, respectively.

To estimate those three unknown parameters, we minimize
the difference between the signal s(¢) we model and the

RIGHTSE LI MN iy

58

MobiCom’18, October 29-November 2, 2018, New Delhi, India

Figure 9: (a) An UCA with nine antennas. (b) Signal
travels different distances to arrive at different anten-
nas in the UCA, which results in the phase differences
across antennas.

signal y(t) we receive:

[T,©,A] = arg min ||y() — s(t)|| 4)
T,0,A

where T = [r1,72,...,7.]7, © = [01,0,...,0;]" and A =

[er1, 2, . . ., ar]T are the ToF, AoA and amplitude of L paths.

We borrow the method of xD-Track [51] to solve the opti-

mization problem described in Eqn 4 to obtain ©.

3.3 Evaluation

We evaluate the performance of SWAN in AoA estimation in
this section. We also build and evaluate an indoor localization
system based on the estimated AoA.

Methodology. We build a 9-antenna UCA for Wi-Fi APs in
our design (N=9). In the UCA, the distance between two adja-
cent antennas are fixed to /2, where A is the wavelength of
the carrier wave. All the antennas are located at the vertexes
of an nonagon, with an edge length of 1/2. The radius of
the UCA is r = A/(4sin 20°). Figure 9 (a) depicts the testbed
setting of the UCA. The antenna distance between antennas
in ULA is also fixed to be A/2. We also build a 3-antenna ULA
for comparison. The distance between adjacent antennas is
also fixed to be 4/2.

We configure an Arduino YUN to be a Wi-Fi signal emit-
ter. A commodity Wi-Fi AP (WPJ558 or WDR4300) works in
monitor mode to receive the signal sent from the Arduino
YUN. Line-of-Sight (LoS) between the AP and the Arduino
YUN is ensured during the experiment. The AP collects the
CSI from the UCA and sends to a server to process and es-
timate the AoA from Arduino YUN. We compare the AoA
estimation performance from SWAN with a 9-antenna UCA
with a 3-antenna ULA as supported by most mainstream APs.
In localization experiment, we use two APs working in mon-
itor mode to locate the Arduino YUN. All the experiments
are conducted in two offices of 600 m? and 420 m?, and one
meeting room of 54 m?.

AoA accuracy. We collect CSI measured from both the UCA
and the ULA at each of 200 test locations and estimate the

Session: Living on the Edge: Mobile Systems at the Network's Edge

1 -
0.9} P]
0.8} -~ -
0.7} il]

w 067 el]
QQo5¢- ’_t']
O©o4} ¢ :
0.3F A . .
02+f — UCA with 9 antenna |
o1y ULA with 3 antenna |
ok
0 4 8 12 16 20 24 28

AoOA error (degree)

Figure 10: CDF of AoA estimation errors using 9-
antenna UCA and 3-antenna ULA on Wi-Fi AP.

AoA of the direct path based on the same maximum likeli-
hood method described in Eqn 4. The ground truth is cal-
culated based on the physical locations of the AP and the
Arduino YUN. In the experiment we ensure that all test lo-
cations are within the field view of the ULA, that favors the
ULA performance. We plot the CDF of AoA estimation errors
in Figure 10. The median error from the 9-antenna UCA is
2.6°, while that from the 3-antenna ULA array is 7.1°. The 90
percentile errors from the UCA and ULA are 5.7° and 17.1°,
respectively. We see 3x improvement of 9-antenna UCA over
3-antenna ULA in AoA estimation accuracy.

The field of view . Our experiment demonstrates that UCA
is able to have a 360° field of view. We put the AP with UCA
at one location and the Arduino YUN at 76 different locations.
The ground truth AoA of those 76 locations covers a range
of [0°,360°]. We estimate the AoA and plot the median AoA
error at each location in Figure 11. We see that the AoA
estimation is uniformly accurate across all the test directions
with a maximum median error of 9.8°. The average error
from all tests is 2.8°. The UCA built with SWAN provides
360 degree field of view with moderate accuracy.

Localization. We use two APs with UCA to estimate the
AoA from the Arduino YUN. The direct path AoAs are then
used to locate the Arduino YUN, in the same way as Array-
Track [53]. We repeat the test with ULA at exact the same
AP and Arduino YUN locations. Again we ensure that the
Arduino YUN is in the field view of the ULA, which favours
its performance. Figure 12 plots the results. The median error
achieved is 0.45 m with the 9-antenna UCA and 1.43 m with
the 3-antenna ULA, respectively. The 90 percentile error is
0.65 m with the UCA and 2.48 m with the ULA. We see 3.8X
improvement in localization accuracy.

Antenna number. More antennas in the array, more ac-
curate results we may expect from SWAN. The maximum

RIGHTSE LI MN iy

59

MobiCom’18, October 29-November 2, 2018, New Delhi, India

90
120 60
150 30
< o0 10°
4°AgA error
180 0
210 330
240 300
270

Figure 11: The median AoA estimation error using 9-
antenna UCA at 76 locations plotted on a polar map.

— UCA with 9 antenna |
ULA with 3 antenna |

0 05 1 15 2 25 3 35 4 45 5

Localization error (m)

Figure 12: CDF of localization error with the AoA esti-
mated using 9-antenna UCA and 3-antenna ULA.

700 655 5.5
L 600 % --%--Theoretical antenna number 15
2 %, —E-AoA estimation error 2
E 5000 419145 &
2 3.87° g
« 400 N, 4 Z
€ 327 =
£ 300 135 &
(]
£ 200 13 «
< g e g
100" S0 283 163 DTG $2.5
109 93
0 : : ‘ : ‘ 2
1 2 3 4 5 6 7

Relative speed (m/s)

Figure 13: The impact of mobility to the number of
antennas SWAN can support and thus to the AoA esti-
mation accuracy of the SWAN’s 9-antenna UCA.

number of antennas SWAN can enable is limited by the chan-
nel coherence time. When the channel is more stable, SWAN
can keep switching across the antennas for every received

Session: Living on the Edge: Mobile Systems at the Network's Edge

packet and collect more CSI from more antennas. Theoreti-
cally, the coherence time is the time interval during which
the channel is considered not varying, which is usually ap-
proximated from the relative speed of the transceiver. If the
Wi-Fi is transmitting at 600 Mbps, as shown in Figure 2, the
expected transmission time of each packet is around 190 ps.
With such an transmission rate, we derive the theoretical
number of antennas that SWAN can enable for one sweep-
ing. Figure 13 plots the results. We see that even when the
transmitter moves at 7 m/s, SWAN is still able to provide us
a virtual phased-array with 93 antennas.

We perform experiments to further study the impact of
the mobility to our 9-antenna UCA. We let the Arduino YUN
move away from the UCA with a constant speed and estimate
the AoA estimation errors.We see that the error increases
slowly with the increase of speed, i.e., from 2.56° at 1 m/s
to 4.19° at 7 m/s. We do not observe severe performance
degrade due to such level of movement.

4 CASE II: COMMUNICATION WITH
ANTENNA DIVERSITY

SWAN increases the number of antennas that a commodity
Wi-Fi AP can communicate with. Antennas in the extended
array may experience entirely different channel conditions
from each other. Wisely selecting the antenna combinations
with the best channel conditions helps to maximize the spa-
tial diversity of the AP and achieve the best communication
throughput with its clients.

4.1 Communication with antenna
diversity

Spatial diversity. We observe that the signal strengths of an-
tennas in SWAN are highly heterogeneous. To demonstrate
the heterogeneity, we divide an area of 1.6m X 2m into 20
40cm X 40cm girds and put a Wi-Fi sender at each of the girds
(30 in total) to transmit packets. We put a SWAN AP 10m
away as the receiver and let it switch the receiving antennas.
In Figure 14 (a), we plot the RSSIs from all 12 antennas with
the sender at 30 locations. We calculate the maximum RSSI
difference for each sender location by RSSI,;,.x — RSSIin,
where RSSI,,qx and RSSI,, .. are the maximum and mini-
mum RSSI obtained from the 12 antennas. Figure 14 (b) plots
the results. From the two figures, we see high variation of
RSSIs across antennas as well as across sender locations. In
comparison, in Figure 14 (c), we also plot the RSSIs across
packets on each of three antennas. We see minor variations
of RSSIs on the same antenna within +1 dB from the mean
value. The above experiment results demonstrate the spatial
diversity across antennas in SWAN. Selecting antennas with
higher RSSI helps to achieve higher throughput. Frequency
selective fading is another factor that significantly affects

RIGHTSE LI MN iy

60

MobiCom’18, October 29-November 2, 2018, New Delhi, India

(b)
12
3
5 10
£ 38
2
€6 >
2 4
c
< 2
4
1 6 10 15 20 25 30 0 3 6 9 121518212427 30
Trace index (© Trace index
35 T T T T T T T T T
30
o
T25
A 20
14
15
——Antenna 1 —— Antenna 2 —— Antenna 3
10 | | I | I I | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Packet index

Figure 14: We measure RSSIs of 12 antennas: (a) The
RSSI value of each antenna at 30 locations. (b) The
maximum RSSI differences across the 12 antennas at
each of the 30 locations. (c) The RSSI of three antennas
across 2000 packets.

the channel condition beside signal strength [39]. Since the
antennas in the array experience independent fading, select-
ing the antenna combination that results in lower selective
fading can also improve the link throughput.

Antenna selection. To harvest the antenna diversity en-
abled by SWAN, we build an antenna selection module and
embed it into the 802.11 network stack, which automatically
selects the antenna combination for transmitting Wi-Fi pack-
ets. Specifically, the antenna selection module first measures
and then compares the channel quality of all possible antenna
combinations and then selects the one that provides the best
channel. It is widely known that RSSI is not enough to quan-
tify the quality of the wideband, frequency selective faded
Wi-Fi channel [37, 48, 58]. CSI matrix fully characterizes the
Wi-Fi channel but cannot provide quantitative comparison
across channels [13]. Thus, we use the effective-SNR [13, 36]
calculated with both RSSI and CSI as the metric to quantify
the channel quality and select the antenna combinations
with highest effective SNR to communicate with.

To measure the RSSI and CSI on each antenna, we adopt a
simple antenna sweeping mechanism described in Script 2 to
collect RSSIs and CSI for all 12 antennas in the extended array,
which requires four consecutive packets. Wi-Fi NIC is able to
derive both RSSI and CSI simultaneously from a received data
packet. Therefore, the antenna selection module makes use
of existing data packets if the AP is receiving from its clients
(uplink traffic). Otherwise, the AP generates uplink traffic by
explicitly requesting the client to send the probing packets to
the AP. During the antenna sweeping, the AP as the receiver

Session: Living on the Edge: Mobile Systems at the Network's Edge

Script 2: Antenna sweeping

Input: No. of antennas N, attached to each chain
1 ant-comb|3]={0} ;
2 fori=1;i < N, do
3 forj=0;j <3;j+mdo
4 L ant-comb[j]| = i;
5 config_rx_ant(ant-comb[3]);
[pkt;, csi;, ant-comb;] = recv_pkt()

=2

does not switch its antenna until it successfully receives one
packet with its current antenna combination. The client as
the sender keeps track of successfully transmitted packets
and stops when the required number of packets are delivered.
Though the CSI is measured for the channel from the client
to the AP, the selected antenna combination also works for
the reverse channel because of channel reciprocity.

There are several other modules other than antenna selec-
tion module in the Wi-Fi network stack to select or adapt the
communication parameters including the channel frequency,
the channel bandwidth (20 or 40 MHz), the guard interval
(400 or 800 ns) and the data rate. The modules adapt their
parameters in parallel and at different time scale. The chan-
nel frequency and bandwidth selection changes only when
the current channel becomes overcrowded. The antenna se-
lection module changes the antenna combination when the
channel coefficients change. Therefore, we keep tracking
the channel variation and restart the antenna sweeping and
re-select the best antenna combinations, when the channel
varies. The data rate is varied all the time even when the
channel is stable as it takes time for the data rate to converge
to the optimal. All the modules operates independently. A
joint rate antenna selection algorithm may further improve
the communication throughput. Developing the optimal con-
figuration selection algorithm is left as our future work.

Channel variations. To track channel variations, SWAN
keeps a record of the most recent received CSI csi, over the
previous antenna combination and calculates the difference
with the new CSI measurement csi, by csi = csip — CSip.
Theoretically, the difference ¢si should be minor for static
channel. But the time varying phase and amplitude errors
due to carrier frequency offset (CFO), symbol timing offset
(STO), and sampling frequency offset (SFO) [50, 54] make
the CSI vary even when the channel remains unchanged.
Figure 15 presents the measured CSI difference between
consecutive packets. The phase and amplitude differences are
linear for static channel. Specifically, the amplitude difference
is flat with a fitted line of zero slope. The phase difference
is fitted to a sloped line due to the frequency dependent
errors introduced by STO and SFO [50, 54]. On the other

RIGHTSE LI MN iy

61

MobiCom’18, October 29-November 2, 2018, New Delhi, India

. (a) 30 (b)
% '3 x Sati'c channel +¢....¢-*+ % o5l * Satic channel
T o5l Varing channel +d - 20 * Varing channel
E ’ m“f = "‘
e 12 e e 15 Wt oy B
R ot] J— T 10 - *hrt
% 05 U S 5/ i
S et E O s e S nsani st
& .05 < 5

0 10 20 30 40 50 0 10 20 30 40 50

Subcarrier index Subcarrier index

Figure 15: The CSI difference measured from a static
and a varying channel with phase difference of csi plot-
ted in (a) and amplitude difference plotted in (b).

hand, when the channel varies, the linearity of phase and
amplitude differences disappears, as suggested in Figure 15.

Above observations allow us to use linear fitting to track
the channel variance. We thus measure the linearity of both
phase and amplitude of csi. Specifically, we do the linear
curve fitting, and calculate the goodness of our fit. In sta-
tistics, R? is used to measure goodness of a fit, which is
calculated as:

O
1 (i -)
where N, y;, §; and 7 are the number of data points, the

ith data points, the ith fitted data and the mean of all data,

respectively. We calculate the Rf) and R? of the phase and

2 .
csi’

)

amplitude of csi, separately and derive the averaged R

R? + e~ ll€llR?
Risi = % (6)
where € is the slope of the fitted curve of csi amplitude, which
captures the flatness of the amplitude curve. According to
Eqn 6, Risi falls into the range of [0, 1] and we treat the
channel with Risi > 0.9 as static and otherwise varied. For
robustness, the average R factors of three most recent three
packets is used. When CSI is not available, RSSI is used for
tracking channel variations. From Figure 14 (c), we see that
RSSI variations is less than 1 dB for static channels and we
thus identify the channel to be varying when the difference
of RSSI relative to the mean is greater than 2 dB for any two
of the three antennas, and for three consecutive packets.

4.2 Evaluation

We evaluate the throughput with the extended antenna array
provided by SWAN. We let one WPJ558 Wi-Fi router work
in AP mode. One Arduino YUN and another WPJ558 work
in client mode and connect to the AP. Arduino YUN has one
antenna and the WPJ558 has three antennas, which are used

Session: Living on the Edge: Mobile Systems at the Network's Edge

15 20 25 30 35 40 45 50 55 60 65 70
Throughput (Mbps)

75

Figure 16: CDF of achieved throughput from a SISO
link (between AP and Arduino) at 400 locations.

7—SWAN with auto antenna selectlon L
- - -SWAN fixed antenna with max avérage
----- Original Wi-Fi

180 200 220

160
Throughput (Mbps)

80 100 120 140
Figure 17: CDF of achieved throughput from a MIMO

link (between AP and WPJ558) at 400 locations.

for single-input-single-output (SISO) and multi-input-multi-
output (MIMO) experiments, respectively.

Methodology. We conduct both static and mobile experi-
ments. In the static experiment, we put the client at 400 dif-
ferent locations in our office, let AP communicate with the
client, and measure the throughput. The links between the
AP and 155 out of the 400 client locations are under non-LoS
condition. In the mobile experiments, we move the clients
along a pre-defined trajectory and measure the throughput
for different segments. We let the AP work with and without
the antenna array of SWAN. We compare the throughput
from SWAN with that from the original three antennas of
the Wi-Fi AP. To provide a fair comparison, we use a mobile
robot to carry our clients and moves at a fixed 1.4m/s which
is the normal walking speed of a human being.

Static channels. We measure the averaged throughput be-
tween the AP and the Arduino YUN at each of the 400 lo-
cations. Figure 16 plots the throughput achieved using our
antenna selection mechanism with SWAN. We compare with
the original Wi-Fi with its three antennas. We also measure

RIGHTSE LI MN iy

62

MobiCom’18, October 29-November 2, 2018, New Delhi, India

(a)

g ©0 70
g % Se6|!
R .,,\.li |
IR &
E_ [

60 50
0 50 100150200250 300350400 0
Location index

10 20
Antenna combination index

30 40 50 60

Figure 18: (a) The difference between the antenna com-
binations that achieve highest throughput and those
selected by our auto antenna selection mechanism. (b)
The measured throughput of all 64 combinations at
one randomly selected location.

the throughput across all 64 fixed antenna combinations in
SWAN, and find out the combination that maximizes the
averaged throughput over the 400 locations. We plot the re-
sults from the three settings in Figure 16. We see that SWAN
with our antenna selection mechanism achieves a 70% quan-
tile of 68 Mbps, which is 11 Mbps and 21 Mbps higher than
fixed antenna combination that can achieve maximum aver-
age throughput and the original Wi-Fi antennas. We repeat
the above experiment with WPJ558 which supports MIMO.
The results are plotted in Figure 17. We see similar fact that
SWAN with our antenna selection mechanism achieves a
70% quantile of 195 Mbps, which is 32 Mbps and 48 Mbps
higher than systems using the fixed antenna combinations
and original three fixed Wi-Fi antennas, respectively.

The experiments show that SWAN improves the Wi-Fi
system throughput in two aspects. First, SWAN provides
higher antenna diversity compared with all existing Wi-Fi
APs with only three fixed antennas. The best antenna com-
bination provides more than 10 Mbps throughput gain on
top of Wi-Fi. But a fixed antenna combination cannot fit
all channel conditions. Therefore, the second improvement
comes from the auto antenna selection according to the chan-
nel measurement. By adjusting the antenna configurations
across locations SWAN can achieve additional 11 Mbps and
32 Mpbs throughput gains over the fixed combinations, for
SISO and MIMO link, respectively. We see SWAN achieves
over 30% throughput improvement on both the SISO and
MIMO settings over the original Wi-Fi antennas.

Antenna selection. We evaluate the performance of our
antenna selection mechanism. We use all 64 antenna for
communication at each of the 400 locations, which gives us
the best antenna combination for each location. Each antenna
combination is represented as a unique number in the range
of [1,64]. In Figure 18 (a), we compare the best antenna
combination with that selected by our auto antenna selection
mechanism, and plot the difference. Zero difference means

Session: Living on the Edge: Mobile Systems at the Network's Edge

028t 11 e
£ 55| --+-Original Wi-Fi R B Vopees] |
= 18| =~ SWAN fixed ant with max average ; 1
13+ ——SWAN with auto ant selection .
8 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Segment index

Figure 19: Averaged SISO throughput at 50 segments
of a pre-defined trajectory.

the auto selected combination gives the best. In experiment,
our mechanism picks the best at 365 out of all 400 locations.
Even for those not picking the best antenna combination,
our pick still gives very high throughput compared with the
best. To illustrate, in Figure 18 (b), we plot the measured
throughput of all 64 antenna combinations at one location.
The highest throughput is achieved with 17th combinations.
Our mechanism selects 29th combination, which achieves a
throughput very close to the best.

Mobile channels. We let the client move along a pre-defined
trajectory. We divide the trajectory into 1m segments and
measure the average throughput achieved for each segment.
We plot the throughput of SISO link in Figure 19, and that of
MIMO link in Figure 20. Similar to the static experiments, we
also test the throughput from the best fixed antenna combi-
nation and that from the original Wi-Fi. We see that SWAN
with auto antenna selection outperforms any fixed combi-
nation. SWAN achieves average throughput of 53.3 Mbps,
which is 7.4 Mbps and 14.8 Mbps higher than the best fixed
combinations and that of the original Wi-Fi in SISO case. In
MIMO case, SWAN with auto antenna selection achieves av-
erage throughput of 153.9 Mbps, which is 23.0 Mbps and 34.4
Mbps higher than the other two. The experiment results sug-
gest that our mechanism is able to timely detect the channel
variations in mobility, and switch the antennas in order to
achieve higher throughput. Similar to the static experiments,
SWAN provides gains in two-folds — the antenna diversity
from extended array and channel adaptation from automatic
antenna selection module.

5 SWAN IN SCALE

Previous discussions and experiments are based on our 12-
antenna prototype setting. SWAN can easily scale to a larger
array of antennas. The current design of SWAN is based on

RIGHTSE LI MN iy

63

MobiCom’18, October 29-November 2, 2018, New Delhi, India

YIRS

}
—+-Orlginal Wi-Fi * RVt
- SWAN fixed ant with max average ¥

| ——SWAN with auto ant selection

20 I Il I Il I I Il I
0 5 10 15 20 25 30 35 40 45

Segment index

| gm==17nT R

50

Figure 20: Averaged MIMO throughput at 50 segments
of a pre-defined trajectory.

a single tier of RF switches, e.g., three SP4T for 12 antennas,
SP8T for 24 antennas, or SP12T for 36 antennas. Through
cascaded connection, we can extend COTS RF switches to
more throws. Figure 21 gives an example where we connect
five SP4T in a cascaded way to form a 16 throws (SP16T)
switch. A single MCU, e.g., an Arduino board, coordinates
all SP4T switches and builds a SP16T transparent to the AP.
Using three such SP16T, we can get a 48 antenna array.

The control exchange of SWAN can also scale. A key factor
that limits the number of antennas that SWAN can support
is the storage required to store the template TCP packets
for signaling different antenna combinations. The size of
each template sk_buff is 274 bytes. For an antenna array of
192 antennas (i.e., 64 to each radio chain), the RAM space
required is 71.8Mb, which is affordable on normal Wi-Fi
routers, e.g., both WDR4300 and WPJ558 have 128Mb RAM.
To further scale beyond that, SWAN assembles ad hoc con-
trol packets. SWAN employs a general packet template with
intact IP and TCP headers but empty payload. When assem-
bling the ad hoc control packet, SWAN duplicates the empty
TCP template and insert the antenna combination descriptor
ant-comb to the payload. The control packet is then sent to
the Arduino, which however does not need to decode the
packet so not verify the CRC (which does not likely match
the control payload) in ag71xx_rx_packet() in the kernel. By
doing this, SWAN only needs minimum RAM space to save
the empty TCP template, with a trade-off in slight increase
of its t4p time and thus slight increase of its chance in an-
tenna mis-configurations (which however can be detected
and annotated in most cases by SWAN).

6 RELATED WORK

Antenna extension on commodity Wi-Fi. Phaser [11]
enables a large phased-array on commodity by combing

Session: Living on the Edge: Mobile Systems at the Network's Edge

4 antennas 4 antennas

TS

Spii
|

[
—|lllll 7610 ———
mcu] e

Ethernet To one of the radio chains

Ti17

by

175]

|7 2]
A
=
2
ol

Figure 21: Five SP4AT switches can be stitched together
to form a SP16T.

the channel measurement (CSI) collected by multiple Wi-
Fi NICs. Phaser has more radio chains than antennas since
one radio chain from each of those NICs is connected with
each other for synchronization purpose and thus wasted,
which results in significant hardware costs. The multiple
NICs used by Phaser are on different Wi-Fi APs so that they
do not work cooperatively as a cohort to provide general
Wi-Fi communication services. Prior works [1, 27, 38] also
emulate large antenna arrays using Synthetic Aperture Radar
(SAR). SAR however, requires physical movement of the
antennas, incurring huge delay [2], and thus cannot meet the
s level switching speed requirement. AmorFi [24] connects
multiple radio front ends with multiple APs together via
optical fiber and then selects the radio front ends for each AP.
AmorFi requires dedicated and costly hardware and cannot
be extended to other applications such as AoA estimation.

Many antenna system. Many efforts has been made to
build many antenna systems for distributed MIMO [14, 25],
multi-user beamforming [4, 10, 16, 42, 43, 45, 55, 56], and full
duplex communication system [5, 40, 44], based on software-
define-radio (SDR) platform. All those systems enables tens
of radio chains by connecting multiple synchronized SDR
boards together to work as a single AP. The channel capacity
increases and the total user the system can simultaneously
communicate with also increases, proportionally with the
radio chains. The number of radio chain on a single piece of
SDR is, however, still limited, e.g., four for a single WRAP
board. Therefore, multiple pieces of SDRs are required to en-
able many anatennas, which results in tremendous hardware
cost and makes those techniques impractical to be directly
implemented on commodity Wi-Fi systems.

Phased-array. Phased-array is widely used in many dif-
ferent systems as a sensing interface to estimate AoA or
AoD [3, 29, 31]. Recent advances [11] have built phased-
array on commodity Wi-Fi with three antennas and enables

RIGHTSE LI MN iy

64

MobiCom’18, October 29-November 2, 2018, New Delhi, India

applications such as indoor localization [11, 26, 27, 53], pas-
sive tracking [23, 51], security [52], Wi-Fi imaging [15] and
activity recognition [1, 38] with the estimated AoA or AoD.
SWAN enables a new opportunity to greatly increase the
antenna number in the phased-array and thus provide angle
estimation with much finer resolution and higher accuracy.

Antenna diversity. Equipping MIMO systems with more
antennas than radio chains and selecting the optimal an-
tenna group to perform the MIMO communication can im-
prove the capacity and reliability of MIMO communica-
tions, with significantly reduced hardware complexity and
cost [6, 12, 34, 35, 41]. SWAN is the first system that realizes
similar gain on commodity Wi-Fi systems, with low cost
COTS hardware components. Theoretically, spatial shift key-
ing (SSK) [9, 19, 21, 46] and spatial modulation [20, 32, 57] can
make use of the antenna diversity and achieve multi-folds
throughput improvement, which however requires modifica-
tions to the encoding and decoding modules of Wi-Fi PHY.
Hybrid beamforming [8, 33, 49] harvests the spatial diversity
with analog beam steering using phase shifter and share sim-
ilar architecture with SWAN. Existing hybrid beamforming
systems are based on software-define-radio platforms and
are impossible to be directly applied to commodity Wi-Fi de-
vices without addressing similar challenges that SWAN has
met including the fast control exchanging and reliable anno-
tation. Most existing efforts including hybrid beamforming
do not support antenna switching and thus cannot harness
the spatial diversity for wireless sensing applications.

7 CONCLUSION

This paper introduces our design and implementation experi-
ence of SWAN. SWAN serves as a general, plug-and-play an-
tenna extension solution to commodity Wi-Fi devices. SWAN
enables ps level control between the AP and the Arduino
MCU. SWAN provides easy-to-use user interface for build-
ing diverse applications. Our experimental study shows that
SWAN provides fast and reliable antenna configuration that
helps to significantly improve the performance of RF sensing
and communication applications.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
and shepherd for their valuable comments and helpful sug-
gestions s that improve the quality of this paper. The authors
would also like to thank Fan Yi and Agustinus Wellson Ten-
gourtius for helping with the experimentation. The work is
supported by the Singapore MOE Tier 1 grant RG125/17, Tier
2 grant MOE2016-T2-2-023, and NTU CoE grant M4081879.

Session: Living on the Edge: Mobile Systems at the Network's Edge

REFERENCES

[1] Fadel Adib and Dina Katabi. 2013. See Through Walls with WiFi!. In

ACM SIGCOMM.

Fadel Adib, Swarun Kumar, Omid Aryan, Shyamnath Gollakota, and

Dina Katabi. 2013. Interference Alignment by Motion. In ACM Mobi-

Com.

Noach Amitay, Victor Galindo, and Chen Pang Wu. 1972. Theory and

analysis of phased array antennas. (1972).

Narendra Anand, Ryan E. Guerra, and Edward W. Knightly. 2014. The

Case for UHF-band MU-MIMO. In ACM MobiCom.

Ehsan Aryafar, Mohammad Amir Khojastepour, Karthikeyan Sundare-

san, Sampath Rangarajan, and Mung Chiang. 2012. MIDU: Enabling

MIMO Full Duplex. In ACM MobiCom.

R. S. Blum and J. H. Winters. 2002. On optimum MIMO with antenna

selection. IEEE Communications Letters (2002).

Lu Chen, Fei Wu, Jiagi Xu, Kannan Srinivasan, and Ness Shroff. 2017.

BiPass: Enabling End-to-End Full Duplex. In ACM MobiCom.

Z.Chen, X. Zhang, S. Wang, Y. Xu, J. Xiong, and X. Wang. 2017. BUSH:

Empowering large-scale MU-MIMO in WLANs with hybrid beamform-

ing. In IEEE INFOCOM.

C. M. Cheng, P. H. Hsiao, H. T. Kung, and D. Vlah. 2007. Trans-

mit Antenna Selection Based on Link-layer Channel Probing. In IEEE

WOWMOM.

Adriana B. Flores, Sadia Quadri, and Edward W. Knightly. 2016. A

Scalable Multi-User Uplink for Wi-Fi. In USENLX NSDL

[11] Jon Gjengset, Jie Xiong, Graeme McPhillips, and Kyle Jamieson. 2014.

Phaser: Enabling Phased Array Signal Processing on Commodity WiFi

Access Points. In ACM MobiCom.

A. Gorokhov, D. A. Gore, and A. J. Paulraj. 2003. Receive antenna

selection for MIMO spatial multiplexing: theory and algorithms. IEEE

Transactions on Signal Processing (2003).

Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. 2010.

Predictable 802.11 Packet Delivery from Wireless Channel Measure-

ments. In ACM SIGCOMM.

Ezzeldin Hamed, Hariharan Rahul, Mohammed A. Abdelghany, and

Dina Katabi. 2016. Real-time Distributed MIMO Systems. In ACM

SIGCOMM.

Donny Huang, Rajalakshmi Nandakumar, and Shyamnath Gollakota.

2014. Feasibility and Limits of Wi-fi Imaging. In ACM SenSys (SenSys

’14).

Christopher Husmann, Georgios Georgis, Konstantinos Nikitopoulos,

and Kyle Jamieson. 2017. Flexcore: Massively Parallel and Flexible

Processing for Large MIMO Access Points. In USENIX NSDIL

P. Ioannides and C. A. Balanis. 2005. Uniform circular arrays for smart

antennas. IEEE Antennas and Propagation Magazine (2005).

A Ismail and A Abidi. 2005. A 3.1 to 8.2 GHz direct conversion receiver

for MB-OFDM UWB communications. In IEEE ISSCC.

[19] J.Jeganathan, A. Ghrayeb, and L. Szczecinski. 2008. Generalized space
shift keying modulation for MIMO channels. In IEEE PIMRC.

[20] Jeyadeepan Jeganathan, Ali Ghrayeb, and Leszek Szczecinski. 2008.
Spatial modulation: Optimal detection and performance analysis. IEEE
Communications Letters (2008).

[21] J.Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron. 2009. Space

shift keying modulation for MIMO channels. IEEE Trans. on Wireless

Communications (2009).

Y. Jiang, Z. Li, and J. Wang. 2017. PTrack: Enhancing the Applicability

of Pedestrian Tracking with Wearables. In IEEE ICDCS.

Kiran Raj Joshi, Dinesh Bharadia, Manikanta Kotaru, and Sachin Katti.

2015. WiDeo: Fine-grained Device-free Motion Tracing using RF

Backscatter.. In USENIX NSDL

Ramanujan K Sheshadri, Mustafa Y. Arslan, Karthikeyan Sun-

daresan, Sampath Rangarajan, and Dimitrios Koutsonikolas. 2016.

(10]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[22]

(23]

[24]

RIGHTSE LI MN iy

65

MobiCom’18, October 29-November 2, 2018, New Delhi, India

AmorFi: Amorphous WiFi Networks for High-density Deployments.
In CoNEXT.

[25] HRSKD Katabi. 2012. Megamimo: Scaling wireless capacity with user
demands. (2012).

[26] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. 2015.
SpotFi: Decimeter Level Localization Using WiFi. In ACM SIGCOMM.

[27] Swarun Kumar, Stephanie Gil, Dina Katabi, and Daniela Rus. 2014. Ac-
curate Indoor Localization with Zero Start-up Cost. In ACM MobiCom.

[28] Yang Liu and Zhenjiang Li. [n. d.]. aLeak: Privacy Leakage through
Context-Free Wearable Side-Channel.

[29] Robert J Mailloux. 2005. Phased array antenna handbook. Artech House

Boston.

SWAN maintenance page. [n. d.]. http://wands.sg/AtherosCSI/SWAN/.

Paul F McManamon, Terry A Dorschner, David L Corkum, Larry J

Friedman, Douglas S Hobbs, Michael Holz, Sergey Liberman, Huy Q

Nguyen, Daniel P Resler, Richard C Sharp, et al. 1996. Optical phased

array technology. Proc. IEEE (1996).

R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun. 2008. Spatial

Modulation. IEEE Trans. on Vehicular Technology (2008).

Andreas F Molisch, Vishnu V Ratnam, Shengqian Han, Zheda Li, Sinh

Le Hong Nguyen, Linsheng Li, and Katsuyuki Haneda. 2017. Hybrid

beamforming for massive MIMO: A survey. IEEE Communications

Magazine (2017).

A. F. Molisch and M. Z. Win. 2004. MIMO systems with antenna

selection. IEEE Microwave Magazine (2004).

A. F. Molisch, M. Z. Win, Yang-Seok Choi, and J. H. Winters. 2005.

Capacity of MIMO systems with antenna selection. IEEE Transactions

on Wireless Communications (2005).

S. Nanda and K. M. Rege. 1998. Frame error rates for convolutional

codes on fading channels and the concept of effective Eb/N0O. IEEE

Transactions on Vehicular Technology (1998).

Ioannis Pefkianakis, Yun Hu, Starsky HY. Wong, Hao Yang, and

Songwu Lu. 2010. MIMO Rate Adaptation in 802.11N Wireless Net-

works. In ACM MobiCom.

[38] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel.

2013. Whole-home Gesture Recognition Using Wireless Signals. In

ACM MobiCom.

Hariharan Rahul, Farinaz Edalat, Dina Katabi, and Charles G. Sodini.

2009. Frequency-aware Rate Adaptation and MAC Protocols. In ACM

MobiCom.

T. Rithonen, S. Werner, and R. Wichman. 2011. Mitigation of Loopback

Self-Interference in Full-Duplex MIMO Relays. IEEE Transactions on

Signal Processing (2011).

S.Sanayei and A. Nosratinia. 2004. Antenna selection in MIMO systems.

IEEE Communications Magazine (2004).

Clayton Shepard, Abeer Javed, and Lin Zhong. 2015. Control Channel

Design for Many-Antenna MU-MIMO. In ACM MobiCom.

Clayton Shepard, Hang Yu, Narendra Anand, Erran Li, Thomas

Marzetta, Richard Yang, and Lin Zhong. 2012. Argos: Practical Many-

antenna Base Stations. In ACM MobiCom.

A. Shojaeifard, K. K. Wong, M. Di Renzo, G. Zheng, K. A. Hamdi, and

J. Tang. 2017. Massive MIMO-Enabled Full-Duplex Cellular Networks.

IEEE Transactions on Communications (2017).

Sanjib Sur, Toannis Pefkianakis, Xinyu Zhang, and Kyu-Han Kim. 2016.

Practical MU-MIMO User Selection on 802.11Ac Commodity Networks.

In ACM MobiCom.

Sanjib Sur, Teng Wei, and Xinyu Zhang. 2015. Bringing Multi-antenna

Gain to Energy-constrained Wireless Devices. In ACM IPSN.

Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and

Geoffrey M. Voelker. 2011. Sora: High-performance Software Radio

Using General-purpose Multi-core Processors. Commun. ACM (2011).

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

Session: Living on the Edge: Mobile Systems at the Network's Edge

[48] Starsky H.Y. Wong, Hao Yang, Songwu Lu, and Vaduvur Bharghavan.
2006. Robust Rate Adaptation for 802.11 Wireless Networks. In ACM
MobiCom.

[49] Xiufeng Xie, Eugene Chai, Xinyu Zhang, Karthikeyan Sundaresan,
Amir Khojastepour, and Sampath Rangarajan. 2015. Hekaton: Efficient
and Practical Large-Scale MIMO. In ACM MobiCom.

[50] Yaxiong Xie, Zhenjiang Li, and Mo Li. 2015. Precise Power Delay
Profiling with Commodity WiFi. In ACM MobiCom.

[51] Yaxiong Xie, Jie Xiong, Mo Li, and Kyle Jamieson. 2016. xD-Track:
Leveraging Multi-dimensional Information for Passive Wi-Fi Tracking.
In ACM HotWireless.

[52] Jie Xiong and Kyle Jamieson. 2010. SecureAngle: Improving Wireless
Security Using Angle-of-arrival Information. In ACM MobiCom.

[53] Jie Xiong and Kyle Jamieson. 2013. ArrayTrack: A Fine-grained Indoor
Location System. In USENIX NSDIL

66
RIGHTSE LI MN iy

MobiCom’18, October 29-November 2, 2018, New Delhi, India

[54] Jie Xiong, Karthikeyan Sundaresan, and Kyle Jamieson. 2015. Tone-
Track: Leveraging Frequency-Agile Radios for Time-Based Indoor
Wireless Localization. In ACM MobiCom.

[55] Jie Xiong, Karthikeyan Sundaresan, Kyle Jamieson, Mohammad A.
Khojastepour, and Sampath Rangarajan. 2014. MIDAS: Empowering
802.11Ac Networks with Multiple-Input Distributed Antenna Systems.
In ACM CoNEXT.

[56] Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu,
Jiansong Zhang, and Yongguang Zhang. 2013. BigStation: Enabling
Scalable Real-time Signal Processingin Large Mu-mimo Systems. In
ACM SIGCOMM.

[57] A. Younis, W. Thompson, M. Di Renzo, C. X. Wang, M. A. Beach, H.
Haas, and P. M. Grant. 2013. Performance of Spatial Modulation Using
Measured Real-World Channels. In IEEE VTC Fall.

[58] J. Zhang, K. Tan, J. Zhao, H. Wu, and Y. Zhang. 2008. A Practical
SNR-Guided Rate Adaptation. In JEEE INFOCOM.

