
These	are	example	long	answer	questions.	The	%inal	exam	will	have	three	long	
answer	questions,	each	worth	20	points.	

9. Given	the	following	declaration	for	a	Stack	class,	where	table	is	an	array	of	size	
tablesize,	write	the	de%initions	of	the	default	constructor,	and	the	push()	and	pop()	
methods	for	the	class.	Don’t	worry	about	any	#includes.	To	explain	further,	
tablesize	should	be	initially	set	to	0	by	the	default	constructor,	but	this	should	be	
modi%ied	by	push(),	which	will	allocate	new	space	as	needed	to	grow	the	size	of	table.	

 class Stack{
 private:
 int top;
 int tablesize;
 float *table;
 public:
 Stack();
 Stack(const Stack &s);
 void clear();
 bool empty() const;
 void push(float number);
 float pop();
 Stack& operator=(const Stack &s);
 };

Stack::Stack(): top(0), tablesize(0), table(NULL){
}

Stack::push(float number){
 if(top == tablesize){
 // the 10 below is arbitrary, anything > 0 will work
 float *resizedtable = new float[tablesize + 10];
 for(int i = 0; i < tablesize; i++)
 resizedtable[i] = table[i];
 delete table;
 table = resizedtable;
 }
 table[top] = number;
 top++;
}

float Stack::pop(){
 if(empty()){
 cerr << "stack underflow" << endl;
 exit(1);
 }
 top--;
 return table[top];
}

	of	1 2

10.You	are	building	a	maze,	which	is	organized	as	a	2D	grid	layout	of	a	set	of	rooms.	Each	
room	can	be	either	a	wall,	a	corridor,	a	boss	lair,		an	in%irmary,	or	a	treasure	trove.	Each	
room	will	be	displayed	with	a	different	texture	map,	and	each	has	a	different	effect	on	
the	player’s	movement.	However,	each	room	shares	certain	information,	such	as	its	
location	in	the	maze,	and	whether	it	has	been	entered	before	or	not.	Design	a	base	class	
and	subclasses	for	wall,	boss,	and	treasure	trove	rooms.	

// Most Room methods are pure virtual methods.
// You would never allocate a room, just subclasses
class Room{
protected:
 int textureid;
 bool visited;
 int row, col;
 bool doors[4];
public:
 Room() = 0;
 void Visit();
 bool WasVisited() const;
 virtual void SetTexture() = 0;
 virtual int HealthEffect() = 0;
 virtual int Reward() const = 0;
 virtual void Draw() const = 0;
}

class Wall: public Room{
public:
 Wall();
 void SetTexture();
 int HealthEffect() const; // would always return 0
 int Reward() const; // would always return 0
 void Draw() const;
}
class Boss: public Room{
public:
 Boss();
 void SetTexture();
 int HealthEffect() const; // return -1 if not visited
 int Reward() const; // would always return 0
 void Draw() const;
}
class Treasure: public Room{
public:
 Treasure();
 void SetTexture();
 int HealthEffect() const; // would always return 0
 int Reward() const; // if not visited return treasure value
 void Draw() const;
}

	of	2 2

