These are example long answer questions. The final exam will have three long
answer questions, each worth 20 points.

9. Given the following declaration for a Stack class, where table is an array of size
tablesize, write the definitions of the default constructor, and the push() and pop()
methods for the class. Don’t worry about any #inc ludes. To explain further,
tablesize should be initially set to 0 by the default constructor, but this should be
modified by push (), which will allocate new space as needed to grow the size of table.

class Stack{
private:
int top;
int tablesize;
float xtable;
public:
Stack();
Stack(const Stack &s);
void clear();
bool empty() const;
void push(float number);
float pop();
Stack& operator=(const Stack &s);
I

Stack::Stack(): top(@), tablesize(@), table(NULL){
}

Stack::push(float number){

if(top == tablesize){
// the 10 below is arbitrary, anything > @ will work
float *resizedtable = new float[tablesize + 10];
for(int i = 0; i < tablesize; i++)

resizedtable[i] = tablelil;

delete table;
table = resizedtable;

}

table[top] = number;

top++;

by

float Stack::pop(){
if(empty()){
cerr << "stack underflow" << endl;
exit(1);
h
top——;
return tableltop];
}

1of2



10.You are building a maze, which is organized as a 2D grid layout of a set of rooms. Each
room can be either a wall, a corridor, a boss lair, an infirmary, or a treasure trove. Each
room will be displayed with a different texture map, and each has a different effect on
the player’s movement. However, each room shares certain information, such as its
location in the maze, and whether it has been entered before or not. Design a base class
and subclasses for wall, boss, and treasure trove rooms.

// Most Room methods are pure virtual methods.
// You would never allocate a room, just subclasses
class Room{
protected:
int textureid;
bool visited;
int row, col;
bool doors[4];
public:
Room() = 0;
void Visit();
bool WasVisited() const;
virtual void SetTexture() = 0;
virtual int HealthEffect() 0;
virtual int Reward() const = 0;
virtual void Draw() const = 0;

}

class Wall: public Room{

public:
Wall();
void SetTexture();
int HealthEffect() const; // would always return 0
int Reward() const; // would always return 0
void Draw() const;

}

class Boss: public Room{

public:
Boss();
void SetTexture();
int HealthEffect() const; // return -1 if not visited
int Reward() const; // would always return @
void Draw() const;

¥

class Treasure: public Room{

public:
Treasure();
void SetTexture();
int HealthEffect() const; // would always return @
int Reward() const; // if not visited return treasure value
void Draw() const;

20f 2



