
EZ Draw Users Manual
version 1.0

Donald H. House

October 3, 2019

Clemson University

EZ Draw is an interactive graphics Application Program Interface (API) that is designed to be
easy to use for programming students in their first courses, enabling them to complete
significant interactive graphics programming exercises as they develop their programming
skills. EZ Draw is built on top of the SDL game programming API. All of the underlying graphics
are done via calls to SDL routines, which in turn utilize the OpenGL API.

On the next page is a first example program written using the EZ Draw API. The main routine
does only three things. It first creates an 800x600 pixel window on the screen with a title bar
saying: “Hello World”. It then enters a loop that calls the updateDisplay routine every 1/30
of a second. This loop exits when either the user presses the ESC key on the keyboard or
clicks the kill box on the window. The main routine finally finishes by calling the EZ_Quit()
quit routine, which shuts down the EZ Draw and its display window.

The while loop in the main routine calls the EZ_HandleEvents() routine over and over again,
until it returns true (i.e. a nonzero value). What EZ_HandleEvents() does is to query the
operating system for external events, like key presses on the keyboard, mouse button clicks, or
mouse motion. It also responds to a timer event that is internally generated by the EZ Draw
system every 1/30 of a second. EZ_HandleEvents() takes four parameters. The first is the
name of a routine to be called whenever the 1/30 of a second timer event occurs. The second,
third, and fourth parameters are the names of routines to be called respectively for keyboard
events, mouse button events, and mouse motion events. In this example, the last three
parameters are NULL, meaning that no routine is to be called for any of the external events.
Therefore, all that this loop will do is to call the updateDisplay() routine every 1/30 of a
second until either the user presses ESC or clicks the window kill box.

The job of the updateDisplay() routine is to make a new drawing and display it on the
screen in the EZ Draw window. The steps that this routine takes are to first clear the drawing to
a background color, then to draw a filled in rectangle in another color, and finally to display this
new drawing in the window. It may seem strange that this is being done every 1/30 of a
second, since the drawing never changes. However, EZ Draw is designed to allow the
construction of interactive animated displays, so the fact that the drawing routine is called
repetitively is very useful in more advanced programs.

Notice that this example program makes extensive use of #define statements so that the
program code itself has no “magic” numbers in it. All of these numbers are specified at the
start of the program, so that changing them automatically changes the values throughout.

A word needs to also be said about colors. All colors are specified in EZ Draw using Red,
Green, Blue (RGB) color specifications. These three numbers are specified as unsigned chars
so they are on the scale 0 to 255. For example if no red is wanted the red value would be 0, if
full intensity red is wanted the red value would be 255, and if 1/2 intensity red is
wanted the value would be 127. So, the rectangle color (200, 100, 50) is saying
that the resulting color should be 78% full red, 39% full green, and 20% full blue.

On the other hand, the background color (70, 100, 140) is 27% full red, 39% full
green, and 55% full blue. 

//
// helloworld.c
// Basic EZ Draw program to draw a rectangle on the screen
//
#include "ezdraw.h" // the ezdraw interface must be included
#include <stdio.h>

// dimensions of the display window
#define WINDOWWIDTH 800
#define WINDOWHEIGHT 600

// coordinates of the rectangle are relative to the window
#define RECTWIDTH (WINDOWWIDTH / 2)
#define RECTHEIGHT (WINDOWHEIGHT / 2)
#define RECTX0 ((WINDOWWIDTH - RECTWIDTH) / 2)
#define RECTY0 ((WINDOWHEIGHT - RECTHEIGHT) / 2)

// RGB colors for the rectangle and screen background
// note: R, G, and B are on a scale from 0 to 255
#define RECTCOLOR 200, 100, 50
#define BACKCOLOR 70, 100, 140

typedef enum _bool{FALSE, TRUE} bool; // handy boolean constants

// display routine, called from EZ_HandleEvents every 1/30 of a second
void updateDisplay(){
 EZ_SetBackColor(BACKCOLOR); // specify drawing background color
 EZ_ClearDrawing(); // clear drawing to background color

 // draw the rectangle
 EZ_SetColor(RECTCOLOR); // first specify drawing color
 EZ_FillRect(RECTX0, RECTY0, RECTWIDTH, RECTHEIGHT);

 EZ_DisplayDrawing(); // send the new drawing to the screen
}

int main() {
 bool quit = FALSE;

 EZ_Init(WINDOWWIDTH, WINDOWHEIGHT, "Hello World");

 // loop that will keep going until EZ_HandleEvents() sees that
 // the ESC key was pressed or the window kill box was clicked
 while(!quit){
 quit = EZ_HandleEvents(updateDisplay, NULL, NULL, NULL);
 }

 EZ_Quit();
}  

If the main event loop were updated as shown below and the following routines were added to
the helloworld.c program, the program would respond to all events, not just the timer
events. In this example, the event handling routines simply print out their arguments. In a useful
program, they would do whatever was necessary to respond to each type of event.

// keyboard routine, print out the key that was pressed
void handleKey(unsigned char key){
 printf("k %c\n", key);
}

// mouse button routine, print button status and mouse position
void handleButton(int updown, int mousex, int mousey){
 printf("b %d (%d, %d)\n", updown, mousex, mousey);
}

// mouse motion routine, print mouse position, and change of position
void handleMouseMotion(int mousex, int mousey,

int dmousex, int dmousey){
 printf("m (%d, %d) (%d, %d)\n", mousex, mousey, dmousex, dmousey);
}

. . .
 // event loop that calls all four event processing routines

while(!quit){
 quit = EZ_HandleEvents(updateDisplay, handleKey,
 handleButton, handleMouseMotion);
}

. . .

Compiling EZ Draw Programs

A program using EZ Draw can be conveniently compiled using the following Makefile. Note,
that the Makefile should be in the same directory as the program being compiled. The
ezdraw.h include file should be in the directory specified by IDIR and the libezdraw.a
library should be in the directory specified by LDIR. Change the NAME = line in the Makefile
to match the name of your .c file. Change the CC = line if you want to use a compiler other
than gcc, for example to compile under the C++ compiler change gcc to g++.

CC = gcc
NAME = helloworld

path to directory holding the ezdraw.h file
IDIR = ~/ezdraw/
path to the directory holding the libezdraw.a files
LDIR = ~/ezdraw/

loader flags showing where to find the SDL libraries
LDFLAGS = `sdl2-config --libs`

non SDL libraries to load: ezdraw and math library
LIBS = -lezdraw -lm

compiler flags for maximum warnings, debugger information,
and where to find SDL include files
CFLAGS = `sdl2-config --cflags` -g -W -Wall -Wextra -pedantic -O0 -I
`sdl2-config --prefix`/include/

OBJS = $(NAME).o

$(NAME): $(NAME).o $(LDIR)libezdraw.a
 $(CC) -o $(NAME) $(NAME).o $(CFLAGS) -L $(LDIR) $(LIBS) $(LDFLAGS)

$(NAME).o: $(NAME).c $(IDIR)ezdraw.h
 $(CC) $(CFLAGS) -I $(IDIR) -c $< -o $@

clean:
 rm -f *.o
 rm -f *~
 rm -f $(NAME)

To compile your program, type: make

Or to clean up the directory and make sure that everything is recompiled from scratch the next
time you make, type: make clean  

EZ Draw Application Program Interface

C Struct Types

EZ_Point: Gives the position of a point relative to the bottom lefthand corner of the
window. Used by the EZ_DrawLineStrip(), EZ_DrawLineLoop(),
EZ_FillTriangle(), and EZ_OutlineTriangle() routines.

EZ_Rect: Gives the location and size of a rectangle. The position is relative to the bottom
lefthand corner of the window. Used by the EZ_FillRects(),
EZ_OutlineRects(), and EZ_DrawTexture() routines.

EZ_Color: Gives the red, green, blue, and alpha components of a color. Since they are
unsigned char’s all values are on a scale of 0 to 255. For the RGB components 0
means none of the component, and 255 means the full brightness of the
component. The alpha component signifies color opacity, where 0 means the
color is fully transparent, and 255 means it is fully opaque.

int x horizontal coordinate

int y vertical coordinate

int x horizontal coordinate of the bottom lefthand corner

int y vertical coordinate of the bottom lefthand corner

int w width in pixels

int h height in pixels

unsigned char r red component

unsigned char g green component

unsigned char b blue component

unsigned char a alpha component

EZ_Image: Gives all of the information supporting the handling of an image. Images always
are stored with 32 bits per pixel, with each pixel consisting of 4 bytes giving the
red, green, blue, and alpha values for the pixel.

Color Setting Routines

All colors are specified as RGBA quadruples, with minimum value 0 and maximum value 255.
r, g, and b specify the red, green and blue components, while a specifies the alpha
component.

void EZ_SetColor(unsigned char r, unsigned char g, unsigned char b);

Set the red, green, and blue components of the fully opaque color (a = 255) that will be used
for drawing. Note: this color stays current until a subsequent call to EZ_SetColor() or
EZ_SetColorRGBA().

void EZ_SetColorRGBA(unsigned char r, unsigned char g,
 unsigned char b, unsigned char a);

Set the red, green, blue, and alpha components of the color that will be used for drawing.
Note: this color stays current until a subsequent call to EZ_SetColor() or
EZ_SetColorRGBA()

void EZ_SetBackColor(unsigned char r, unsigned char g,  
unsigned char b);

Set the red, green, and blue components of the fully opaque color (a = 255) that will be used
to fill the background of the drawing when EZ_ClearDrawing() is called, or the
background of an image when EZ_CreateBlankImage() is called. Note: this color stays
current until a subsequent call to EZ_SetBackColor() or EZ_SetBackColorRGBA().

void EZ_SetBackColorRGBA(unsigned char r, unsigned char g,  
 unsigned char b, unsigned char a);

Set the red, green, blue, and alpha components of the color that will be used to fill the
background of the drawing when EZ_ClearDrawing() is called, or the background of an
image when EZ_CreateBlankImage() is called. Note: this background color stays current
until a subsequent call to EZ_SetBackColor() or EZ_SetBackColorRGBA().

int w width in pixels

int h height in pixels

void * pixels pointer to the block of memory holding
the image pixels

Drawing Routines

Drawing management

void EZ_ClearDrawing();

Clear the drawing to the most recently set background color. See EZ_SetBackColor()

void EZ_DisplayDrawing();

Display the current drawing in the display window on the screen.

Drawing objects

All of the following routines draw using the most recently set drawing color. See
EZ_SetColor() and EZ_SetColorRGBA. All (x, y) positions are pixel positions relative
to the lower lefthand corner of the window, with x indicating the horizontal pixel coordinate,
and y the vertical pixel coordinate.

void EZ_DrawPoint(int x, int y);

Draw a single pixel at position (x, y).

void EZ_DrawLine(int x0, int y0, int x1, int y1);

Draw a line from (x0, y0) to (x1, y1).

void EZ_DrawLineStrip(EZ_Point *points, int npoints);

Draw a connected set of lines using the point positions in the array points. npoints-1
lines will be drawn between consecutive npoints points in the array.

void EZ_DrawLineLoop(EZ_Point *points, int npoints);

Draw a closed loop of connected lines using the point positions in the array points.
npoints lines will be drawn between consecutive npoints points in the array, with the
final line connecting the last point in the array to the first.

void EZ_FillRect(int xll, int yll, int w, int h);

Draw a filled in rectangle whose lower lefthand corner is (xll, yll) and whose width is w
and height is h.

void EZ_FillRects(EZ_Rect *rects, int nrects);

Draw a set of filled in rectangles using the rectangle specifications in the array rects.
nrects rectangles will be drawn. See the EZ_Rect definition above.

void EZ_OutlineRect(int xll, int yll, int w, int h);

Draw the outline of a rectangle whose lower lefthand corner is (xll, yll), whose width is w
and height is h.

void EZ_OutlineRects(EZ_Rect *rects, int nrects);

Draw the outlines of a set of rectangles using the rectangle specifications in the array
rects. nrects rectangles will be drawn. See the EZ_Rect definition above.

void EZ_FillTriangle(EZ_Point p0, EZ_Point p1, EZ_Point p2);

Draw a filled in triangle whose three vertices are specified by the points p0, p1, and p2. See
the EZ_Point definition above.

void EZ_OutlineTriangle(EZ_Point p0, EZ_Point p1, EZ_Point p2);

Draw the outline of a triangle whose three vertices are specified by the points p0, p1, and
p2. See the EZ_Point definition above.

void EZ_FillCircle(int cx, int cy, int radius);

Draw a filled in circle whose center is at position (cx, cy) and whose radius is given by
radius.

void EZ_OutlineCircle(int cx, int cy, int radius);

Draw the outline of a circle whose center is at position (cx, cy) and whose radius is given
by radius.

Image Management

EZ_Image *EZ_CreateBlankImage(int width, int height);

Create a blank image of the given width and height. The background of the image will
match the most recently set background color.

EZ_Image *EZ_LoadBMPImage(const char *bmpfilename);

Load an image from a BMP file (with filename suffix .bmp). The width and height of the
image will be determined from the file when the image is read. These can be obtained from
the EZ_Image data structure.

Texture Management

int EZ_CreateTexture(EZ_Image *image);

Create a texture from an image, and return its unique integer ID number. The texture will be
loaded onto the graphics card, but will not be displayed until a call to EZ_DrawTexture()
is made using its texture ID.

void EZ_DestroyTexture(int texture);

Destroy a texture by removing it from the graphics card. Its texture ID number will be made
invalid after this call, and cannot be reused.

void EZ_DrawTexture(int texture, EZ_Rect *texture_rect, EZ_Rect
 *drawing_rect);

Draw the texture indicated by the given texture ID. Parameter texture_rect determines
the rectangle on the texture that will be drawn. Parameter drawing_rect determines the
rectangle in the window that the texture image will be drawn to. If necessary, the portion of
the texture determined by texture_rect will be resized to fit drawing_rect. If
texture_rect is NULL, the entire texture will be drawn. If drawing_rect is NULL, the
texture will be drawn to the entire window.

System Control Routines

System management

int EZ_Init(int width, int height, char *title);

Initialize the EZ Draw system, and create a display window on the screen whose dimensions
are given by width and height. The window’s title is given by the string pointed to by
title. Note, none of the other EZ Draw routines should be called until an EZ_Init() call
has been made.

void EZ_Quit();

Terminate the EZ Draw system, by shutting down the display window and releasing any
graphics resources being used by the program.

Event handling

void EZ_WaitForQuit();

This is an event loop that runs indefinitely until the user either presses the ESC key on the
keyboard or clicks the window kill box. This can be used in place of EZ_HandleEvents()
when EZ Draw is being used to simply display a single drawing, and no interaction or
animation is required. In this case, the program must draw the scene to be displayed before
calling EZ_WaitForQuit(). Note, the routine contains an event loop within it, so it should
not be placed inside a while loop.

int EZ_HandleEvents(void (*updateDisplay)(),
 void (*handleKey)(unsigned char),
 void (*handleButton)(int, int, int),
 void (*handleMouseMotion)(int, int, int, int));

This is the event handling routine that programs must use if they want to do any user
interaction or animation. It would normally be placed within a while loop that loops until the
return value of EZ_HandleEvents() is true (i.e. non zero). Each time it is called it checks
for either the 1/30 of a second timer event, a keyboard key press, a left mouse button
change (press or release), or mouse motion when the left mouse button is depressed. If the
timer event has occurred, the display routine whose name has been passed in as the first
parameter (updateDisplay) is called with no arguments. If a keyboard key has been
pressed, the key processing routine whose name has been passed in as the second
parameter (handleKey) is called with a single argument giving the ASCII code of the key
that was pressed. If the left mouse button has been either pressed or released, the mouse
button processing routine whose name has been passed in as the third parameter
(handleButton) is called with three arguments: button status (1 = button pressed, 0 =
button released), and the x and y coordinates of the mouse. If the left mouse button is
pressed and the mouse has moved, the mouse motion processing routine whose name has
been passed in as the fourth parameter (handleMouseMotion) is called with four
arguments: the first two are the x and y coordinates of the mouse, and the second two are
the change in mouse x and y coordinates since the last mouse motion or left button press
event was processed.

