
CPSC	1070	
Lab	Project:	bash	shell	scripts	
Nov.	11	&	13	

Introduction

This	is	a	two	day	exercise	to	begin	your	familiarization	with	scripting	within	the	Linux	bash	
shell.	You	are	to	complete	as	many	of	the	tasks	on	the	last	page	as	you	are	able	to	before	
checking	out	with	your	lab	TA	on	Wednesday.	

The	interface	that	you	type	into	and	interact	with	when	you	are	using	Linux	at	the	
command	line	is	called	the	shell.	There	are	several	shell	versions,	the	most	well	known	
being	the	bash	shell,	the	korn	shell,	and	the	c	shell.	The	standard	School	of	Computing	Linux	
distribution	uses	the	bash	shell.	One	of	the	powerful	aspects	of	using	Linux	at	the	command	
line	is	that	you	can	deKine	short	programs,	called	shell	scripts,	that	you	can	create	quickly	to	
do	complex	or	tedious	tasks	by	typing	a	single	command.	Shell	scripts	allow	you	to	combine	
multiple	shell	operations	using	loops,	and	conditionals.	All	of	the	operations	available	to	
you	under	the	bash	shell,	including	programs	you	have	written	yourself	can	be	used	to	build	
these	scripts.	

The	link	on	the	lab	schedule	page	for	Nov.	11	will	take	you	to	a	bash	shell	scripting	
cheatsheet	that	you	can	use	to	help	you	Kind	your	way	around	during	these	labs.	You	can	see	
by	the	cheatsheet	that	there	is	much,	much	more	to	shell	scripting	than	will	be	covered	in	
this	lab.	

Tasks	and	Concepts	for	Monday	

Make a working directory

Download	the	zip	Kile	scripting.zip	linked	to	the	lab	schedule	for	Nov.	11	into	your	top	
level	directory,	and	unzip	it.	This	will	create	a	directory	named	scripting.	Move	into	this	
directory.	If	you	execute	an	ls	command,	it	should	display:	

message.txt morefiles/ somefiles/ text.txt

This	set	of	directories	and	Kiles	will	be	used	for	this	lab	and	the	subsequent	ones,	giving	you	
a	playground	for	trying	shell	scripts,	without	worrying	about	damaging	any	of	your	other	
Kiles.	If	you	mess	things	up	you	can	just	go	back	up	to	your	main	directory,	delete	the	
scripting	directory,	and	unzip	it	again:	

$ rm -r scripting
$ unzip scripting.zip

Basic shell scripting concepts

A	shell	script	is	simply	a	text	Kile,	containing	a	sequence	of	shell	commands	that	are	
intended	to	be	executed	in	order.	Shell	commands	are	the	ones	you	are	already	used	to	like	
cd,	ls,	mv,	cat,	plus	several	additional	ones	like	for	and	if	that	you	can	use	to	form	a	
program.	In	addition,	the	names	of	any	executable	programs	you	have	can	be	treated	just	
like	other	Linux	commands.	Let’s	say	that	your	shell	script	is	named	script,	then	it	can	be	
run	by	the	command	

$ bash script

or	what	is	usually	done	is	that	the	script	is	made	executable	via	the	command	

$ chmod a+x script

and	then	the	shell	script	can	be	run	as	if	it	were	a	compiled	program	like	this	

$ script

or	you	might	have	to	run	it	like	this	

$./script

if	you	have	not	included	the	current	directory	.	in	your	PATH.	

Here	is	a	simple	“hello	world”	example	to	demonstrate	the	basic	structure	of	a	shell	script:	

#!/bin/bash
echo "Hello World"

The	Kirst	line	tells	whatever	shell	you	are	running	that	this	shell	is	written	in	the	bash	shell	
scripting	language,	and	that	it	should	be	run	under	the	bash	shell.	The	echo	Linux	
command	prints	whatever	its	argument	is.	So,	if	you	have	saved	the	above	script	with	the	
name	hello,	then	you	can	make	it	executable,	and	run	it	like	this:	

$ chmod a+x hello
$ hello
Hello World

Please	create	this	script	in	a	text	editor,	make	it	executable,	and	run	it,	so	you	get	the	feel	for	
how	this	works.	

A first useful example

Here	is	an	example	script	that	actually	does	something	useful:	

#!/bin/bash
i=0
for file in *.txt
do
 let i=$i+1
done
echo $i

The	new	commands	and	keywords	that	we	have	not	yet	seen	are	bolded.	Note	that	all	
spaces	and	lack	of	spaces	in	the	above	example	are	important.	For	example,	the	line	i=0	
should	have	no	spaces,	while	the	line for file in *.txt	needs	to	have	the	spaces	as	
shown.	This	is	because	the	bash	shell	uses	spaces	to	separate	commands	from	their	
arguments	and	arguments	from	each	other.		

The	line	i=0	creates	a	variable	named	i	and	sets	it	to	0.	Then	in	the	code,	i	stands	for	the	
variable,	and	$i	stands	for	the	variable’s	contents.	There	should	be	no	spaces	in	the	
statement	i=0,	as	the	=	denotes	a	special	form	of	bash	command	that	assigns	the	value	on	
the	right	of	the	=	to	the	variable	on	the	left.	

The	for	line	initiates	a	for	loop	with	a	Python	like	syntax.	*.txt	is	a	wildcard	that	will	
evaluate	to	the	names	of	all	of	the	Kiles	in	the	current	directory	that	have	the	sufKix	.txt.	
the	full	statement	for textfile in *.txt	means	to	loop	once	for	each	name	in	the	
list	of	Kilenames	returned	by	*.txt,	assigning	each	subsequent	Kile	name	to	a	variable	
named	textfile	on	each	iteration.	The	body	of	the	loop	is	bracketed	by	do	and	done.	

The	statement	let	is	a	command	to	evaluate	an	arithmetic	expression,	so	let i=$i+1	
takes	the	value	of	$i,	adds	1	to	it,	and	stores	the	result	back	in	i.	The	same	expression	
without	the	let	treats	the	expression	as	a	string	expression,	so	if	i	contained	0,	i=$i+1	
would	store	the	string	0+1	in	i,	instead	of	the	arithmetic	sum.	

You	can	probably	see	that	this	program	counts	the	number	of	.txt	Kiles	in	the	current	
directory,	and	prints	out	the	total.	

Create	this	shell	script	in	the	scripting	directory,	name	it	counttexts,	make	it	
executable,	and	run	it	.	Since	there	are	2	.txt	Kiles	in	the	scripting	directory,	the	result	
should	look	like	this	

$ countexts
2

Now,	cd	into	the	morefiles	directory	and	run	the	program	again,	like	this:	

$../counttexts
1

What	is	wrong?	There	are	no	.txt	Kiles	in	the	morefiles	directory,	but	the	program	
prints	1.	The	problem	is	that	the	wildcard	*.txt	returns	*.txt	if	it	Kinds	no	matching	
Kiles,	so	the	for	loop	will	execute	once,	adding	1	to	i.	

We	could	Kix	this	by	using	an	if	statement	so	that	*.txt	will	no	longer	be	counted,	like	this	

#!/bin/bash
i=0
for file in *.txt
do
 if [$file != "*.txt"]
 then
 let i=$i+1
 fi
done
echo $i

The	statement	if []	denotes	an	if	statement,	with	its	test	inside	the	brackets,	the	
statements	then	and	fi	bracket	the	statements	that	should	be	executed	only	if	the	test	is	
true.	

Again,	note	that	since	the	shell	uses	spaces	to	separate	arguments	to	a	command,	the	spaces	
in	the	above	example	are	important.	The	shell	command	is	if.	Its	arguments	are	[,	
$file,	!=,	“*.txt”,	and].	

Add	this	correction	to	your	counttexts	script,	and	test	it	to	make	sure	it	works	correctly.	

Useful reading on if and looping statements

Here	are	links	to	two	excellent	tutorials	on	if	and	looping	statements	in	bash	scripts:	

https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

Please	read	through	these	tutorials	to	be	ready	for	lab	on	Wednesday.	

Tasks for Wednesday

On	Wednesday	you	should	complete	as	many	of	the	following	tasks	as	possible	before	
leaving	the	lab.	Demonstrate	to	the	TA	the	scripts	that	you	have	working	before	leaving	lab.	

https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

Task 1

Write	a	script	that	will	convert	all	of	the	.jpg	Kiles	in	the	somefiles/images/	directory	
into	.bmp	Kiles.		

Remember	that	you	can	use	the	imagemagick	program	convert	that	we	learned	about	in	
the	October	21	lab	to	convert	from	.jpg	to	.bmp.	Recall	that	if	you	have	the	image	Kile	
homer.jpg	and	you	want	to	convert	it	into	a	.bmp	Kile,	you	will	need	to	execute	the	
command		

convert homer.jpg homer.bmp.	

In	order	to	do	this	in	a	script,	you	will	need	to	know	how	to	extract	a	Kilename	preKix	from	
its	sufKix.	If	you	have	the	Kilename	homer.jpg	in	a	variable	named	imgfile,	then	the	
syntax	${imgfile%.jpg}	will	return	the	name	homer	with	the	sufKix	.jpg	removed.	

Task 2

Write	a	script	that	will	Kind	all	of	the	executable	Kiles	in	the	subdirectories	of	the	directory	
scripting/somefiles/source/	and	print	their	names.	Recall	from	the	reading	that	
the	test	for	a	Kile	being	a	directory	is	of	the	form	[-d $filename],	and	the	test	for	a	
Kile	being	executable	is	of	the	form	[-x $filename]	The	printout	should	be:	

subdirectory: big23
 big2
 big2-1print
 big2-1print.py
 big2.py
 big3
 big3.py
subdirectory: biggest
subdirectory: bigloop
 bigloop
 bigloop.py
subdirectory: broccoli
 broccoli

Task 3

Write	a	script	that	will	Kind	all	of	the	.o	Kiles	and	executable	Kiles	in	each	of	the	
subdirectories	of	the	directory	scripting/somefiles/source/	and	delete	them.	
After	deleting	these	Kiles	it	should	make	a	zip	archive	of	each	of	these	subdirectories.	Recall	
that	to	zip	a	directory	you	use	the	command		

zip -r <directoryname> <directoryname>

