CPSC 1070
Lab Project: bash shell scripts
Nov.11 & 13

Introduction

This is a two day exercise to begin your familiarization with scripting within the Linux bash
shell. You are to complete as many of the tasks on the last page as you are able to before
checking out with your lab TA on Wednesday.

The interface that you type into and interact with when you are using Linux at the
command line is called the shell. There are several shell versions, the most well known
being the bash shell, the korn shell, and the c shell. The standard School of Computing Linux
distribution uses the bash shell. One of the powerful aspects of using Linux at the command
line is that you can define short programs, called shell scripts, that you can create quickly to
do complex or tedious tasks by typing a single command. Shell scripts allow you to combine
multiple shell operations using loops, and conditionals. All of the operations available to
you under the bash shell, including programs you have written yourself can be used to build
these scripts.

The link on the lab schedule page for Nov. 11 will take you to a bash shell scripting
cheatsheet that you can use to help you find your way around during these labs. You can see
by the cheatsheet that there is much, much more to shell scripting than will be covered in
this lab.

Tasks and Concepts for Monday

Make a working directory

Download the zip file scripting. zip linked to the lab schedule for Nov. 11 into your top
level directory, and unzip it. This will create a directory named scripting. Move into this
directory. If you execute an 1S command, it should display:

message.txt morefiles/ somefiles/ text.txt

This set of directories and files will be used for this lab and the subsequent ones, giving you
a playground for trying shell scripts, without worrying about damaging any of your other
files. If you mess things up you can just go back up to your main directory, delete the
scripting directory, and unzip it again:

$ rm —-r scripting
$ unzip scripting.zip

Basic shell scripting concepts

A shell script is simply a text file, containing a sequence of shell commands that are
intended to be executed in order. Shell commands are the ones you are already used to like
cd, ls, mv, cat, plus several additional ones like for and if that you can use to form a
program. In addition, the names of any executable programs you have can be treated just
like other Linux commands. Let’s say that your shell script is named script, then it can be
run by the command

$ bash script

or what is usually done is that the script is made executable via the command

$ chmod a+x script

and then the shell script can be run as if it were a compiled program like this
$ script

or you might have to run it like this

$./script

if you have not included the current directory . in your PATH.

Here is a simple “hello world” example to demonstrate the basic structure of a shell script:

#'!/bin/bash
echo "Hello World"

The first line tells whatever shell you are running that this shell is written in the bash shell
scripting language, and that it should be run under the bash shell. The echo Linux
command prints whatever its argument is. So, if you have saved the above script with the
name hello, then you can make it executable, and run it like this:

$ chmod a+x hello
$ hello
Hello World

Please create this script in a text editor, make it executable, and run it, so you get the feel for
how this works.

A first useful example

Here is an example script that actually does something useful:

#'!/bin/bash

i=0
for file 1in *.txt
do
let i=$i+1
done
echo $1

The new commands and keywords that we have not yet seen are bolded. Note that all
spaces and lack of spaces in the above example are important. For example, the line 1=0
should have no spaces, while the line for file in s.txt needs to have the spaces as
shown. This is because the bash shell uses spaces to separate commands from their
arguments and arguments from each other.

The line 1=0 creates a variable named 1i and sets it to 0. Then in the code, 1 stands for the
variable, and $1 stands for the variable’s contents. There should be no spaces in the
statement 1=0, as the = denotes a special form of bash command that assigns the value on
the right of the = to the variable on the left.

The for line initiates a for loop with a Python like syntax. *. txt is a wildcard that will
evaluate to the names of all of the files in the current directory that have the suffix . txt.
the full statement for textfile in s.txt means toloop once for each name in the
list of filenames returned by *. txt, assigning each subsequent file name to a variable
named textfile on each iteration. The body of the loop is bracketed by do and done.

The statement let is a command to evaluate an arithmetic expression, so let i=$i+1
takes the value of $1, adds 1 to it, and stores the result back in i. The same expression
without the let treats the expression as a string expression, so if 1 contained 0, i=$i+1
would store the string @+1 in i, instead of the arithmetic sum.

You can probably see that this program counts the number of . tXt files in the current
directory, and prints out the total.

Create this shell script in the scripting directory, name it counttexts, make it
executable, and run it. Since there are 2 . txt files in the scripting directory, the result
should look like this

$ countexts
2

Now, cd into the morefiles directory and run the program again, like this:

$../counttexts
1

What is wrong? There are no . txt files in the morefiles directory, but the program
prints 1. The problem is that the wildcard *. tXxt returns *. txt if it finds no matching
files, so the for loop will execute once, adding 1 to 1.

We could fix this by using an if statement so that x. txt will no longer be counted, like this

#!/bin/bash
i=0
for file 1in *.txt
do
if [$file !'= "x.txt"]
then
let i=%$i+1
fi
done
echo $i

The statement 1f [] denotes an if statement, with its test inside the brackets, the
statements then and f i bracket the statements that should be executed only if the test is
true.

Again, note that since the shell uses spaces to separate arguments to a command, the spaces
in the above example are important. The shell command is if. Its arguments are [,

$file, !=, “x.txt”, and].

Add this correction to your counttexts script, and test it to make sure it works correctly.

Useful reading on if and looping statements

Here are links to two excellent tutorials on if and looping statements in bash scripts:

https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-1loops.php

Please read through these tutorials to be ready for lab on Wednesday.

Tasks for Wednesday

On Wednesday you should complete as many of the following tasks as possible before
leaving the lab. Demonstrate to the TA the scripts that you have working before leaving lab.

https://ryanstutorials.net/bash-scripting-tutorial/bash-if-statements.php
https://ryanstutorials.net/bash-scripting-tutorial/bash-loops.php

Task 1

Write a script that will convert all of the . j pg files in the somefiles/images/ directory
into . bmp files.

Remember that you can use the imagemagick program convert that we learned about in
the October 21 lab to convert from . jpg to . bmp. Recall that if you have the image file
homer. jpg and you want to convert it into a . bmp file, you will need to execute the
command

convert homer.jpg homer.bmp.

In order to do this in a script, you will need to know how to extract a filename prefix from
its suffix. If you have the filename homer. jpg in a variable named imgfile, then the
syntax ${imgfile%. jpg} will return the name homer with the suffix . j pg removed.

Task 2

Write a script that will find all of the executable files in the subdirectories of the directory
scripting/somefiles/source/ and print their names. Recall from the reading that
the test for a file being a directory is of the form [—d $filename], and the testfora
file being executable is of the form [—x $filename] The printout should be:

subdirectory: big23
big2
big2-1print
big2-1print.py
big2.py
big3
big3.py
subdirectory: biggest
subdirectory: bigloop
bigloop
bigloop.py
subdirectory: broccoli
broccoli

Task 3

Write a script that will find all of the . 0 files and executable files in each of the
subdirectories of the directory scripting/somefiles/source/ and delete them.
After deleting these files it should make a zip archive of each of these subdirectories. Recall
that to zip a directory you use the command

zip —-r <directoryname> <directoryname>

