CPSC 1070
Lab Project: Templated Functions
Nov. 25

Introduction

This is a one day exercise to give you your first practice with templated functions. You are
instructed to write some templated code for a sorting routine. Demonstrate your program
to a TA before leaving the lab.

Getting Started

Download the zip file trysort. zip that is linked to the lab schedule for Nov. 25 and
unzip it. This will create a directory named trysort. Move into this directory. If you
execute an 1S command, it should display:

Makefile Sort.h points.txt trysort.cpp

First take a look at trysort. cpp. Itis a program that is designed to load a list of floating
point numbers from a text file, and store them in an array named numbers. After loading,
the variable n will contain the number of numbers read.

Then, three more arrays are allocated of size Len = n/2, each of a different 2D vector type:
VectorLl,VectorL2, and VectorInf. Note that each of these vector types is a struct
with X and Yy floating point coordinates. The program fills in each of these arrays with
consecutive pairs of numbers from the array numbers. Each vector type overloads the >
operator in a different way, because each measures distance in a different way.

A Bit About Vectors and Distance Metrics

A 2D vector is like a point, in that it has x and y coordinates, but instead of a position, a
vector denotes an orientation and a length. In this exercise, we will only be interested in a
vector’s length. In geometry there are many ways to measure length (or distance), and
these three vector types use three different approaches.

VectorL1l uses the Manhattan Metric to measure distance. That is, how far you would
have to travel if you first moved in the horizontal direction (East/West Streets in
Manhattan) the distance x, and then moved in the vertical direction (North/South Avenues
in Manhattan) the distance y.

VectorL2 uses the Euclidian Metric for distance, which is the usual measure of distance as

it is normally understood. Mathematically it is given by 4 [x% + yz.



VectorInf uses the so-called Infinity or Maximum Metric, which is simply the largest of
the vector’s two components.

Examine the code in trysort.cpp and make sure that you understand how the >
operator is defined in terms of these three different norms for the three vector types.

Coding Project

Now, look at the code in Sort. h. In this file there is just a code stub where the Sort ()
routine should be defined. You can fill this in using any sorting method that you like. For
example, the Wikipedia page on Insertion Sort describes an algorithm that will work well.

Your job is to make a template for this routine that can handle any data type for the array
table for which the > operator is defined. For example, it should work for int, float,
char, or the 3 Vector types. Once you complete the Sort () template, you should be able
to compile everything using the Makef i le, without any changes to the code in
trysort.cpp. Test your code using the data in the input file points. txt. If it works
correctly, the printout from a test run should look like this:

unsorted:



