
CPSC	1070	
Lab	Project:	Templated	Functions	
Nov.	25	

Introduction

This	is	a	one	day	exercise	to	give	you	your	@irst	practice	with	templated	functions.	You	are	
instructed	to	write	some	templated	code	for	a	sorting	routine.	Demonstrate	your	program	
to	a	TA	before	leaving	the	lab.	

Getting Started

Download	the	zip	@ile	trysort.zip	that	is	linked	to	the	lab	schedule	for	Nov.	25	and	
unzip	it.	This	will	create	a	directory	named	trysort.	Move	into	this	directory.	If	you	
execute	an	ls	command,	it	should	display:	

Makefile Sort.h points.txt trysort.cpp

First	take	a	look	at	trysort.cpp.	It	is	a	program	that	is	designed	to	load	a	list	of	@loating	
point	numbers	from	a	text	@ile,	and	store	them	in	an	array	named	numbers.	After	loading,	
the	variable	n	will	contain	the	number	of	numbers	read.	

Then,	three	more	arrays	are	allocated	of	size	len	=	n/2,	each	of	a	different	2D	vector	type:	
VectorL1,	VectorL2,	and	VectorInf.	Note	that	each	of	these	vector	types	is	a	struct	
with	x	and	y	@loating	point	coordinates.	The	program	@ills	in	each	of	these	arrays	with	
consecutive	pairs	of	numbers	from	the	array	numbers.	Each	vector	type	overloads	the	>	
operator	in	a	different	way,	because	each	measures	distance	in	a	different	way.	

A Bit About Vectors and Distance Metrics

A	2D	vector	is	like	a	point,	in	that	it	has	x	and	y	coordinates,	but	instead	of	a	position,	a	
vector	denotes	an	orientation	and	a	length.	In	this	exercise,	we	will	only	be	interested	in	a	
vector’s	length.	In	geometry	there	are	many	ways	to	measure	length	(or	distance),	and	
these	three	vector	types	use	three	different	approaches.		

VectorL1	uses	the	Manhattan	Metric	to	measure	distance.	That	is,	how	far	you	would	
have	to	travel	if	you	@irst	moved	in	the	horizontal	direction	(East/West	Streets	in	
Manhattan)	the	distance	x,	and	then	moved	in	the	vertical	direction	(North/South	Avenues	
in	Manhattan)	the	distance	y.		

VectorL2	uses	the	Euclidian	Metric	for	distance,	which	is	the	usual	measure	of	distance	as	
it	is	normally	understood.	Mathematically	it	is	given	by	 .		x2 + y2

VectorInf	uses	the	so-called	In0inity	or	Maximum	Metric,	which	is	simply	the	largest	of	
the	vector’s	two	components.	

Examine	the	code	in	trysort.cpp	and	make	sure	that	you	understand	how	the	>	
operator	is	de@ined	in	terms	of	these	three	different	norms	for	the	three	vector	types.	

Coding Project

Now,	look	at	the	code	in	Sort.h.	In	this	@ile	there	is	just	a	code	stub	where	the	Sort()	
routine	should	be	de@ined.	You	can	@ill	this	in	using	any	sorting	method	that	you	like.	For	
example,	the	Wikipedia	page	on	Insertion	Sort	describes	an	algorithm	that	will	work	well.		

Your	job	is	to	make	a	template	for	this	routine	that	can	handle	any	data	type	for	the	array	
table	for	which	the	>	operator	is	de@ined.	For	example,	it	should	work	for	int,	float,	
char,	or	the	3	Vector	types.	Once	you	complete	the	Sort()	template,	you	should	be	able	
to	compile	everything	using	the	Makefile,	without	any	changes	to	the	code	in	
trysort.cpp.	Test	your	code	using	the	data	in	the	input	@ile	points.txt.	If	it	works	
correctly,	the	printout	from	a	test	run	should	look	like	this:	

unsorted:
(2, 3)
(7, 6)
(3, 1)
(-2, -4)
(-1, 8)
(5, 5)

sorted, L1:
(3, 1)
(2, 3)
(-2, -4)
(-1, 8)
(5, 5)
(7, 6)

sorted, L2:
(3, 1)
(2, 3)
(-2, -4)
(5, 5)
(-1, 8)
(7, 6)

sorted, L3:
(2, 3)
(3, 1)
(-2, -4)
(5, 5)
(7, 6)
(-1, 8)

