C++ Classes and Object
Oriented Programming

CPSC 1070, Donald House, Clemson University
10/21/19

Some C code for handling
2D points

#include <stdio.h> int main(){
Point p1l;
typedef struct point{ Point p2;
int x, y; int nx, ny;
} Point; int dx, dy;

. . _ .) printf("Enter pl: ");
void setpoint(Point *p, int x@, int y0){ scanf("%d %d", &nx, &ny);
p—>X = X0; setpoint(&pl, nx, ny);

p—=>y = yo; _
1 printf("Enter p2: ");
scanf(“%d %d", &nx, &ny);
void movepoint(Point *p, int dx, int dy){ setpoint(&p2, nx, ny);

p=>X += dx: printpoint(&pl);

p—=>y += dyl printf(", ||);

printpoint(&p2);
printf("\n");

void printpoint(Point *p){
printf("(%d, %d)", p—>x, p—>Y); printf("Enter p2 changes: ");

1 while(scanf("%d %d", &dx, &dy) == 2){
movepoint (&p2, dx, dy);
printpoint(&p2);
printf("\n");

b

return 0;

Critique of Point Code

The data structure:

typedef struct point{
int x, y;
} Point;

|s defined separately from the functions operating on the data:

void setpoint(Point *p, int x@, int y0);
void movepoint(Point *p, int dx, int dy);
void printpoint(Point *p);

Also, pointers to the Point need to be passed around, and the

functions need to be named to explicitly work on Points:
setpoint(&p2, nx, ny);

C++ remedies this by providing for classes, which are designed to
package data structures with methods that operate on the data.

Some Nomenclature

Class is a type whose description consists of declarations
and definitions for both a data structure and operations
on that data structure

Method is an operation (i.e. a function) defined for a class

Class Declaration: declarations for a data structure, and a
set of methods that operate on the data structure.

Class Definition: definitions (i.e. the actual code) for the
set of methods for the class.

Object is a variable of a given class

Example 2D Point Class

Declaration
class Point{ The private region hides data and methods
private: ——g— . ’
int x, y; from access outside of the class’s methods
public: —=— The public region is accessible from outside
Point(); a0 Class constructor, called whenever a Point

object is created
void set(int x@, int y0);

int getx(); :
;:t SZQE ;; —=—— Accessor methods that return hidden data
void move(int dx, int dy);

void print();

Example 2D Point Class

Definition
#include <iostreams Without this, cout and other iostream variables and
using namespace std; ——= methods would have to be accessed like this:
Point::Point(){ std::cout
) set(0, 0); - | he constructor for Point makes sure that the Point’s
coordinates are both 0 by default

id Point::set(int x0, int y0 o
Vo)l(_ ié? set(int x0, int yo){ Within a method of the class, the local namespace

y = y0; —=—=consists of the subfields of the class, as well as the
} parameters and local variables of the method.
int Point::getx(){;

return X,
}
int Point::gety(){

return vy;
}
void Point::move(int dx, int dy){

X += dx;

y += dy;

by

void Point::print(){
cout << "(" << x << ", " <<y << ")

by

Example 2D Point Class

Usage

int main(){ An object of type Point is created just like any other

Point pl; ——=variable, except that the class constructor is automatically

Point p2; called when the variable is created.

int nx, ny;

int dx, dy;

cout << "Enter pl: "; This is how a method is called for an object. The notation is

cin >> nx >> ny; identical with how the subfields of a struct are accessed.
1l.set) ; ~f— . . o

pl.set(nx, ny) What happens is that set () is called with its local

cout << "Enter p2: "; namespace set to the subfields of the object p1.

cin >> nx >> ny;
p2.set(nx, ny);

pl.print();
cout << u’ u;
p2.print();
cout << endl;

cout << "Enter p2 changes: ";
cin >> dx >> dy;
while(!cin.eof()){
p2.move(dx, dy);
p2.print();
cout << endl;
cin >> dx >> dy;

}

return 0;

Example 2D Point Class

Declaration

Definition

Usage

class Point{
private:
int x, y;

public:
Point();

void set(int x0, int y0);
int getx();
int gety();

void move(int dx, int dy);

void print();

b

#include <iostream>
using namespace std;

Point::Point(){
, set(0, 0);

void Point::set(int x@, int y0){
X0;
yo;

X
y
b

int Point::getx(){;
return Xx;

}

int Point::gety(){
return vy;

void Point::move(int dx, int dy)
{

X += dx;

y += dy;
}

void Point::print(){
cout << "(" << x <<
<<y<< ||)||;

1 [}
’

int main(){
Point p1;
Point p2;
int nx, ny;
int dx, dy;
cout << "Enter pl: ";
cin >> nx >> ny;
pl.set(nx, ny);
cout << "Enter p2: ";
cin >> nx >> ny;
p2.set(nx, ny);

61;

pl.print()
cout << ",
p2.print()
cout << en

cout << "Enter p2 changes: ";
cin >> dx >> dy;
while(!cin.eof()){
p2.move(dx, dy);
p2.print();
cout << endl;
cin >> dx >> dy;

}

return 0;

Code is Normally Distributed
Over Several Files

Declaration Definition Usage
Point.h Point.cpp trypoint.cpp

class Point{
private:
int x, y;

public:
Point();

void set(int x0, int y0);
int getx();
int gety();

void move(int dx, int dy);

void print();

#include “Point.h”
#include <iostream>
using namespace std;

Point::Point(){
set(0, 0);
}

void Point::set(int x@, int y0){
x0;
yo;

X
y
}

int Point::getx(){;
return Xx;

int Point::gety(){
return vy;

}

void Point::move(int dx, int dy){
X += dx;
y += dy;

b

void Point::print(){

cout << "(" << x << ",
<<y << '")";

#include “Point.h”

int main(){
Point p1;
Point p2;
int nx, ny;
int dx, dy;
cout << "Enter pl: ";
cin >> nx >> ny;
pl.set(nx, ny);
cout << "Enter p2: ";
cin >> nx >> ny;
p2.set(nx, ny);

pl.print();
cout << ||' ||;
p2.print();

cout << endl;

cout << "Enter p2 changes: ";
cin >> dx >> dy;
while('cin.eof()){
p2.move(dx, dy);
p2.print();
cout << endl;
cin >> dx >> dy;

}

return 0;

With a Makefile Like This

Makefile

CC = g++
CFLAGS = —g
PROJECT = trypoint

DEPS = Point.h . :
0BJ = $(PROJECT).o Point.o Tmsﬂmpesboﬂ1P01nt.cppand |
trypoint. cpp to be compiled to .o files
%.0: %.cpp $(DEPS)
$(CC) $(CFLAGS) -c -0 $@ $<

$(PROJECT): $(0BJ)
$(CC) $(CFLAGS) -0 $@ $"

clean:
rm —f *.0
rm —f s~
rm —f $(PROJECT)

Example C++ Program
Point Exercising Program

Download from the schedule page

