
C++ Classes and Object
Oriented Programming

CPSC 1070, Donald House, Clemson University

10/21/19

int main(){
 Point p1;
 Point p2;
 int nx, ny;
 int dx, dy;

 printf("Enter p1: ");
 scanf("%d %d", &nx, &ny);
 setpoint(&p1, nx, ny);

 printf("Enter p2: ");
 scanf("%d %d", &nx, &ny);
 setpoint(&p2, nx, ny);

 printpoint(&p1);
 printf(", ");
 printpoint(&p2);
 printf("\n");

 printf("Enter p2 changes: ");
 while(scanf("%d %d", &dx, &dy) == 2){
 movepoint(&p2, dx, dy);
 printpoint(&p2);
 printf("\n");
 }

 return 0;
}

Some C code for handling
2D points

#include <stdio.h>

typedef struct point{
 int x, y;
} Point;

void setpoint(Point *p, int x0, int y0){
 p->x = x0;
 p->y = y0;
}

void movepoint(Point *p, int dx, int dy){
 p->x += dx;
 p->y += dy;
}

void printpoint(Point *p){
 printf("(%d, %d)", p->x, p->y);
}

Critique of Point Code
The data structure:

typedef struct point{
 int x, y;
} Point;

Is defined separately from the functions operating on the data:

void setpoint(Point *p, int x0, int y0);
void movepoint(Point *p, int dx, int dy);
void printpoint(Point *p);

Also, pointers to the Point need to be passed around, and the
functions need to be named to explicitly work on Points:

setpoint(&p2, nx, ny);

C++ remedies this by providing for classes, which are designed to
package data structures with methods that operate on the data.

Some Nomenclature
• Class is a type whose description consists of declarations

and definitions for both a data structure and operations
on that data structure

• Method is an operation (i.e. a function) defined for a class

• Class Declaration: declarations for a data structure, and a
set of methods that operate on the data structure.

• Class Definition: definitions (i.e. the actual code) for the
set of methods for the class.

• Object is a variable of a given class

Example 2D Point Class
class Point{
private:
 int x, y;

public:

 Point();

 void set(int x0, int y0);

 int getx();
 int gety();

 void move(int dx, int dy);

 void print();
};

Declaration
The private region hides data and methods
from access outside of the class’s methods

The public region is accessible from outside
Class constructor, called whenever a Point
object is created

Accessor methods that return hidden data

#include <iostream>
using namespace std;

Point::Point(){
 set(0, 0);
}

void Point::set(int x0, int y0){
 x = x0;
 y = y0;
}

int Point::getx(){;
 return x;
}

int Point::gety(){
 return y;
}

void Point::move(int dx, int dy){
 x += dx;
 y += dy;
}

void Point::print(){
 cout << "(" << x << ", " << y << ")";
}

Example 2D Point Class
Definition

Without this, cout and other iostream variables and
methods would have to be accessed like this:
std::cout
The constructor for Point makes sure that the Point’s
coordinates are both 0 by default

Within a method of the class, the local namespace
consists of the subfields of the class, as well as the
parameters and local variables of the method.

Note, that each method name is proceeded by Point::
This indicates that the method is a member of the
class Point, and not just a regular function

Example 2D Point Class
Usage

int main(){
 Point p1;
 Point p2;
 int nx, ny;
 int dx, dy;

 cout << "Enter p1: ";
 cin >> nx >> ny;
 p1.set(nx, ny);

 cout << "Enter p2: ";
 cin >> nx >> ny;
 p2.set(nx, ny);

 p1.print();
 cout << ", ";
 p2.print();
 cout << endl;

 cout << "Enter p2 changes: ";
 cin >> dx >> dy;
 while(!cin.eof()){
 p2.move(dx, dy);
 p2.print();
 cout << endl;
 cin >> dx >> dy;
 }

 return 0;
}

An object of type Point is created just like any other
variable, except that the class constructor is automatically
called when the variable is created.

This is how a method is called for an object. The notation is
identical with how the subfields of a struct are accessed.
What happens is that set() is called with its local
namespace set to the subfields of the object p1.

To call a method on an object, the notation is:
objname.method()

#include <iostream>
using namespace std;

Point::Point(){
 set(0, 0);
}

void Point::set(int x0, int y0){
 x = x0;
 y = y0;
}

int Point::getx(){;
 return x;
}

int Point::gety(){
 return y;
}

void Point::move(int dx, int dy)
{
 x += dx;
 y += dy;
}

void Point::print(){
 cout << "(" << x << ", "
 << y << ")";
}

Example 2D Point Class
class Point{
private:
 int x, y;

public:
 Point();

 void set(int x0, int y0);
 int getx();
 int gety();

 void move(int dx, int dy);

 void print();
};

Declaration Definition Usage
int main(){
 Point p1;
 Point p2;
 int nx, ny;
 int dx, dy;

 cout << "Enter p1: ";
 cin >> nx >> ny;
 p1.set(nx, ny);

 cout << "Enter p2: ";
 cin >> nx >> ny;
 p2.set(nx, ny);

 p1.print();
 cout << ", ";
 p2.print();
 cout << endl;

 cout << "Enter p2 changes: ";
 cin >> dx >> dy;
 while(!cin.eof()){
 p2.move(dx, dy);
 p2.print();
 cout << endl;
 cin >> dx >> dy;
 }

 return 0;
}

Code is Normally Distributed
Over Several Files

Point.h

class Point{
private:
 int x, y;

public:
 Point();

 void set(int x0, int y0);
 int getx();
 int gety();

 void move(int dx, int dy);

 void print();
};

Point.cpp
#include “Point.h”
#include <iostream>
using namespace std;

Point::Point(){
 set(0, 0);
}

void Point::set(int x0, int y0){
 x = x0;
 y = y0;
}

int Point::getx(){;
 return x;
}

int Point::gety(){
 return y;
}

void Point::move(int dx, int dy){
 x += dx;
 y += dy;
}

void Point::print(){
 cout << "(" << x << ", "
 << y << ")";
}

Declaration Definition Usage
trypoint.cpp
#include “Point.h”

int main(){
 Point p1;
 Point p2;
 int nx, ny;
 int dx, dy;

 cout << "Enter p1: ";
 cin >> nx >> ny;
 p1.set(nx, ny);

 cout << "Enter p2: ";
 cin >> nx >> ny;
 p2.set(nx, ny);

 p1.print();
 cout << ", ";
 p2.print();
 cout << endl;

 cout << "Enter p2 changes: ";
 cin >> dx >> dy;
 while(!cin.eof()){
 p2.move(dx, dy);
 p2.print();
 cout << endl;
 cin >> dx >> dy;
 }

 return 0;
}

With a Makefile Like This
CC = g++
CFLAGS = -g
PROJECT = trypoint

DEPS = Point.h
OBJ = $(PROJECT).o Point.o

%.o: %.cpp $(DEPS)
 $(CC) $(CFLAGS) -c -o $@ $<

$(PROJECT): $(OBJ)
 $(CC) $(CFLAGS) -o $@ $^

clean:
 rm -f *.o
 rm -f *~
 rm -f $(PROJECT)

Makefile

This forces both Point.cpp and
trypoint.cpp to be compiled to .o files

Example C++ Program
Point Exercising Program

Download from the schedule page

