
From C to C++
CPSC 1070, Donald House, Clemson University

10/18/19

g++

Compiler

gcc

C++C

Makefile

CC = gcc
CFLAGS = -g
DEPS = stack.h
OBJ = trystack.o stack.o

%.o: %.c $(DEPS)
 $(CC) $(CFLAGS) -c -o $@ $<

trystack: $(OBJ)
 $(CC) $(CFLAGS) -o $@ $^

clean:
 rm -f *.o
 rm -f *~
 rm -f trystack

C++C

CC = g++
CFLAGS = -g
DEPS = stack.h
OBJ = trystack.o stack.o

%.o: %.cpp $(DEPS)
 $(CC) $(CFLAGS) -c -o $@ $<

trystack: $(OBJ)
 $(CC) $(CFLAGS) -o $@ $^

clean:
 rm -f *.o
 rm -f *~
 rm -f trystack

Include Files

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <ctype.h>

C++C

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <cctype>

C I/O vs. Stream I/O
Standard open files
stdin, stdout, stderr

#include <stdio.h>

int n1, n2;
float fnum;

printf(“%f\n”, fnum);
printf(“(%d, %d)\n”, n1, n2);

scanf(“%f”, &fnum);
scanf(“%d %d”, &n1, &n2);

fprintf(stderr, “error message\n”);

C++C
Standard open streams
cin, cout, cerr

#include <iostream>
using namespace std; // or use std::

int n1, n2;
float fnum;

cout << fnum << endl;
cout << “(“ << n1 << “, “ << n2 <<
 “)” << endl;
cin >> fnum;
cin >> n1 >> n2;

cerr << “error message” << endl;

Dynamic Memory
Not part of the language, uses functions defined
in stdlib

#include <stdlib.h>

int *table;
int n;

scanf(“%d”, &n);
table = (int *)malloc(n * sizeof(int));
. . .
free(table);

C++C
Built into the language, uses operators new and
delete

// note: no include needed

int *table;
int n;

cin >> n;
table = new int[n];
. . .
delete []table; // [] needed for array

enums and structs
enum and struct variables need the enum or struct
prefix when being declared

enum colors{RED, GREEN, BLUE};
enum colors tint;

struct point{
 int x, y;
};
struct point pt;

or you could use a typedef:

typedef struct _point{
 int x, y;
} point;
point pt;

C++C
enum and struct variables do not need the enum
or struct prefix

enum colors{RED, GREEN, BLUE};
colors tint;

struct point{
 int x, y;
};
point pt;

function parameters
All parameter passing is done by value. If you
need to affect the variable referred to by the
actual parameter, you need to use a pointer in the
function, and pass the address of the actual
parameter

void swap(int *a, int *b){
 int temp;
 temp = *a; *a = *b; *b = temp;
}

int m, n;
. . .
swap(&m, &n);

C++C
In C++ parameter passing is done by value by
default, but you can pass by reference by
annotating the parameter with an &

void swap(int &a, int &b){
 int temp;
 temp = a; a = b; b = temp;
}

int m, n;
. . .
swap(m, n);

An Example C vs. C++
Bubble Sort Program

Download from the schedule page

