Compositing Theory

and Practice Continued

Now that we’ve looked at the basic theory and math
behind image manipulation and compositing theory,
let’s look at some different approaches in software.

Quick Review

Recall that basic image manipulation is usually performed on one image, with an input image, an
operation, and the output image that is produced. We looked at things like RGB multiply, Add,
Gamma Correction, Invert, Contrast; Filters that are convolved to produce Blurring, Sharpening,
and other effects, and also basic geometric Transformations. Moving on to Multisource operators,
we looked at Over, Mix, Subtract, In, Out, and Atop. Over is the one we’ll use most in composit-
ing. Things to be careful -- remembering if an image is pre-multiplied, including it’s own alpha
channel matte.

Creating mattes can be done in a variety of ways, the Color Difference Method (still based on Petro
Vlahos’ optical work in the 1950s) will be the most common. For every pixel, if the blue is greater
than the green color, then in the new image the new blue will be the green value. Otherwise, the
new blue will be the old blue value. Remember -- if it’s a blue screen area, the blue value will be
high (close to 1) and the green should be low (close to 0). That'll make that area o or black in the
new image. If it’s a fringe area, the blue will still be pretty high, but in the new image it will be re-
placed by a low number (old green value), resulting in a translucent edge. If it’s a normal fore-
ground area, the green should be higher than the blue because the blue should be close to zero.

There are a few ideas from Chapters 8, 9, and 11 that we had just begun to talk about. We’ll con-
tinue them a bit here.

Overview of Chapter 11: Quality and Efficiency

The main point of this material is to be concerned with issues like compression of images, numeric
representation, numeric accuracy, and consolidating operators.

Lossy compression will hurt us in compositing, particularly if it’s done several times -- such as the
several layers in a complex composited image. We’ll continue to lose a little bit each time, and

overall quality will be degraded.

Numeric representation is important because we need to know how much range (much like film
latitude) that can be represented by our format. For instance, 24-bit color can represent 16.8 mil-
lion colors, but since only 8-bits are used for R, G, and B respectively, we only have 256 values of
each of those — not a huge range of brightness when you think about it. Other formats might use
10-bits where 1024 values can be represented instead on each color channel. (It’s a bit like going
from reversal film to negative film that has a wider latitude or range of darks and lights that can be
represented).

Numeric accuracy is important, as discussed in class, because if we start rounding, truncating,
flooring, or ceiling before calculations are completed, then we may affect calculations and their ac-
curacy. Operations such as rounding should be help until the end.

For this same reason, consolidating operators is an important concept in compositing. If a variety
of image filters, effects, etcetera are applied one after the other, we may lose quality. One may clip
values such as darks or lights as discussed in class. Others may multiply or perform other numeric
calculations. The order in which they are performed may be important, and hopefully a program
seeks to maintain numeric accuracy through the compositing operators, but sometimes we have to
realize that it will not, and we have to create our composite differently to preserve quality.

Overview of Chapter 8 & 9: The Interface, Image Viewing, and Analysis

Near the end of class last Thursday, we began to discuss different ways to implement a composite
operation or operations. There are three main approaches: scripting/expressions, a timeline with
layers, or a node/graph-based approach. Under each of these, effects and operators are indicated in
different ways, but the operations are still the same - things like Over and Atop.

Here are some examples:

Script

Output = Over(Image A, Image B)
or

Output = Over(Brightness(Foreground, 1.2), Brightness(Blur(Background, 4.0), 0.8)))

Try to picture what these scripts might look like in a timeline or graph interface as you view the next examples.
Timeline

After Effects takes a timeline approach in its main working space. (As with many programs, there

are ways to switch approaches to varying degrees within a program.)

Here’s an example of the interface with a simple Over operation:

000 Untitled Project.aep *

Notice the various parts of the working space. In the upper left corner is the project window
where media clips are imported and referenced. In the middle is the viewing area, showing the cur-
rent output of the location of the timeline playhead. In the right are a few controls and menus. At
the bottom, is the main working area: the timeline. Notice that there are various layers for each
part of the composition.

k4 untitled.tif

These layers are stacked vertically, showing elements that may be layered with others, using opera-
tions such as Over (the default). Different blending modes are available, though.

b4 untitled.tif

Right-click (or Ctrl-click) on the Timeline tab if you’re in After Effects, and choose Columns—
>Modes. This gives a new column in the timeline workspace as shown above, labeled “Mode”. It
says “Normal” in the image above. You can pull down on this tab, though, to select other blend
modes such as the other Multisource compositing operators that we’ve discussed. (Hint for home-
work...)

" @ AfterEffects File Edit Composition Layer Effect Animation View Window Help V: @ 3 W S 4) B G2 Sat120321AM @

000 Untitled Project.aep *
MO D e@ AdT. /&2

mmmmm

Lighten

oc
Color Dodge.
v

K Co0 p el @0 e LR 08 ek TEeC e

Also, in After Effects, effects such as filters and color correction may be applied by selecting a layer
and choosing the Effects menu or by right-clicking on a layer and choosing from the Effects menu.
When an effect is applied, it appears under the expanding/collapsing triangles below a layer where
the options for that effect may be adjusted.

i=4 Box Blur Reset
BNSY Elur Radius 18.0
-) lterations 1

- 1% Blur Dimensions [Horizontal and 7|
- 1) Repeat Edge Pixels Off
[» Transform

That’s the gist of a timeline interface. Stack layers and stack and stack... the nice thing is that it
makes it easier or at least somewhat more intuitive to apply images, layers, etc. to a certain range of
time in the composite (or composition as After Effects labels it).

Node/Graph-based Approach

Shake has a predominately graph-based interface, although scripts may be written in Shake Script
and there is a timeline view, too.

000 — Proxy Scale: 1.00 - Shake v4.00.0607

Notice the graph and nodes
in the upperright. This is
the main working area. The
left contains the current
view of which node is se-
lected. The bottom left
contains selection tabs for
operations, layers, image
transforms, etc. The bot-
tom right contains the pa-
rameters for whichever
node is selected.

In this example, it’s a very simple “Over” being performed. The background plate (imported with a
File-In node) is connected to an “Over” node chosen from the Layer tab on the left. The fore-
ground element (also imported with a File-In node) is also connected to the “Over” node. When
the “Over” node is chosen, its properties show below in the bottom right. Notice the “premulti-
ply” option selection.

| Curve Edlitar

Here’s the help entry in Shake for “Over”.

Over

Function

The Over function is the main compositing node of Shake. This function places one image over another, according to the matte of the
foreground image. Images are assumed to be premultiplied. You can use a MMult on an input node if it is not premultiplied, or you can
toggle the preMultiply parameter to 1.

clipMode int 1 Toggles between foreground (0) and background resolution (1)
preMultiply int 0 When this is on (1), the foreground image is multplied by its
alpha mask. If it is off (0), it is assumed the foreground image is
pre-multiplied.
addMattes int 0 When this is toggled on (1), the mattes are added together for the
composite.
Synopsis

image Over|
image Foreground,
image Background,
int eclipMode,
int preMultiply,
int addMattes

Vi

Script

image = Over|
Foreground,
Background,
clipMode,

preMultiply,
addMattes

i

Command Line
shake -over image clipMode preMult

See Also
Under, Screen, Inside, Atop

Notice that the help entry lists all of the parameters, describes their function, and also lists the
script command for the same operation.

Here are some of the other Layer nodes that may be selected:
Filter J Warp Cunre Edite

AddText Atop Common

|Mult Inside Interlace |Sub 1Subs

o g !

MultiLayer MultiPlane Outside

Under ZCompose

They should look pretty familiar, showing many of the operations that we’ve discussed so far. Over
will still be used the most, though!

Now that we’ve covered image manipulation and compositing theory and checked out how these
things are performed, try opening After Effects (or Shake if it’s installed, yet) and performing one
of these composites. You can use your material from your first homework assignment, or you can
use the Maya object you made in homework #3. (In Maya, you can render your alpha channel by
checking the tab under render settings. If a .tiff is rendered, the alpha channel is included -- a good
‘ol premultiplied image ready for importing to AE or Shake.)

