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Abstract a very large number of parameters (50-100) in order to deal
with the variability due to differences between individuals,
We demonstrate a fast, robust method of interpreting faceand changes in pose, expression, and lighting. Direct opti-
images using an Active Appearance Model (AAM). An AAM misation over such a high dimensional space seems daunt-
contains a statistical model of shape and grey-level appear-ing.
ance which can generalise to almost any face. Matching In this paper, we show that a direct optimisation approach
to an image involves finding model parameters which min- is feasible and leads to an algorithm which is rapid, accu-
imise the difference between the image and a synthesisedate, and robust. In our proposed method, we do not attempt
face. We observe that displacing each model parameterto solve a general optimisation each time we wish to fit the
from the correct value induces a particular pattern in the model to a new face image. Instead, we exploit the fact
residuals. In a training phase, the AAM learns a linear the optimisation problemis similar each time - we can learn
model of the correlation between parameter displacementsthese similarities off-line. This allows us to find rapid direc-
and the induced residuals. During search it measures thetions of convergence even though the search space has very
residuals and uses this model to correct the current param- high dimensionality. In this paper we discuss the idea of im-
eters, leading to a better fit. A good overall match is ob- age interpretation by synthesis and describe previous related
tained in a few iterations, even from poor starting estimates. work. In section 2 we explain how we build compact mod-
We describe the technique in detail and show it matching to els of face appearance which are capable of generating syn-
new face images. thetic examples of any individual, showing any expression,
under a range of poses, and under any lighting conditions.
We then describe how we rapidly generate face hypotheses
1 Introduction giving possible locations and approximate scales. In sec-
tion 4 we describe our Active Appearance Model algorithm
There is currently a great deal of interest in model-basedin detail and in 5 demonstrate its performance.
approaches to the interpretation of face images [9] [4] [7]
[6][3]. The attractions are two-fold: robust interpretationis 1.1 Interpretation by Synthesis
achieved by constraining solutions to be face-like; and the
ability to ‘explain’ an image in terms of a set of model pa- In recent years many model-based approaches to the in-
rameters provides a natural interface to applications of faceterpretation of face images have been described. One moti-
recognition. In order to achieve these objectives, the facevation is to achieve robust performance by using the model
model should be as complete as possible - able to syntheto constrain solutions to be face-like. A model also provides
sise a very close approximation to any face image whichthe basis for a broad range of applications by 'explaining’
will need to be interpreted. the appearance of a given face image in terms of a compact
Although model-based methods have proved quite successset of model parameters. These parameters are often used to
ful, none of the existing methods uses a full, photo-realistic characterize the identity, pose or expression of a face. In or-
model and attempts to match it directly by minimising the der to interpret a new image, an efficient method of finding
difference between the model-synthesised face and the imthe best match between image and model is required.
age under interpretation. Although suitable photo-realistic  Models which can synthesise full faces have been de-
models exist, (e.g. Edwar@s al[3]), they typically involve scribed by several authors. Turk and Pentland [9] devel-



oped the ‘eigenface’ approach. However, this is not robustassume that the object being tracked may be non-rigid, or
to shape changes in faces, and does not deal well with varithat projective effects may render it so in the image plane,
ability in pose and expression. Ezzat and Poggio [4] synthe-and allow deformations consistent with low energy mesh
sise new views of a face from a set of example views, but distortion (derived using a Finite Element method). A sim-
cannot generalize to unseen faces. Nastat[7] use a 3D ple polynomial model is used to allow changes in intensity
model of the grey-level surface, allowing full synthesis of across the object. Active Appearance Models learn what are
shape and appearance. However the proposed search alggalid shape and intensity variations from their training set.
rithm is likely to get stuck in local minima so is not robust. Sclaroff and Isidoro suggest applying a robust kernel to
Lanitis et al [6] used separate models of shape and the lo-the image differences, an idea we will use in later work.
cal grey-level appearance of a ‘shape-normalised’ face. Ed-Also, since annotating the training set is the most time con-
wardset al [3] extended this by also modelling the correla- suming part of building an AAM, the Active Blob approach
tions between shape and grey-level appearance. Fitting sucimay be useful for 'bootstrapping’ from the first example.
models to new images is achieved in most cases by minimis-

ing an error measure petwee_n the predict.ed appearance ang Modelling Facial Appearance

the image, and is typically time consuming when the full
model is used. Edwards al3] follow Lanitis et al [6] in
using an Active Shape Model to find the face shape quickly.
They then warp the image into a normalised frame and fit "™~ ) i o
a model of the grey-level appearance to the whole face inscrlbed in Edwardst a_l _[3]_to WhICh the re_ader is dlrec_ted
this frame. This is effective, but as the ASM search doesfor_detalls. Some familiarity with Fhe basic approach is re-
not use all the information available, it is not always robust. duired to understand our new Active Appearance Model al-
Our new approach can be seen as an extension of this ideag,or'thm' .

using all the information in a full appearance model to fit 1€ models were generated by combining a model of
to the image. Our aim is take appearance models similarf@ce shape variation with a model of the appearance varia-

those described by Edwaresal[3] and fit them directly to tions of a shape-normalised face. The models were trained

face images. These models are both specific and detailed®" 400 face images, each labelled with 122 landmark
allowing a complete description of a new face. By using points representing the positions of key features. The shape

all the information available, we expect to obtain robust Model was generated by representing each set of landmarks
performance. This approach involves a very high dimen- @S @ vectorx and applying a principal component analysis
sional search problem, but we show below that an efficient (PCA) to the data. Any example can then be approximated

method of solution exists. Efficient stochastic methods of YSINY-

fitting rigid models to images have been described by Vi-

ola and Wells [10] and Matast al [5]. We adopt a similar x =X+ P;b; (1)
strategy for generating face hypotheses when we have no

initial knowledge of where the face may lie in an image. \yhere x is the mean shapeP, is a set of orthogonal
Given a hypothesis, we must refine it to obtain a better fit to 1,0 ges of variatiorandb, is a set of shape parameters. If
the image. This involves estimating both the shape and thegch example image is warped so that its control points
grey-level appearance of the face. Covell [2] demonstratedatch the mean shape (using a triangulation algorithm)
that the parameters of an eigen-feature model can be useg,e can sample the grey level informatien from this

to drive shape model points to the correct place. Similarly, shape-normalisetace patch. By applying PCA to this data
Black and Yacoob [1] used local, hand-crafted models of |y gptain a similar model:

image flow to track facial features. We use a generalisation
of these ideas, using a model which relates the match resid- g=g+P,b, )
ual to the error in the appearance parameters.
In a parallel development Sclaroff and Isidoro [8], have
demonstrated ‘Active Blobs’ for tracking. The approach is The shape and appearance of any example can thus be
broadly similar in that they use image differences to drive summarised by the vectols, andb,. Since there are
tracking, learning the relationship between image error andcorrelations between the shape and grey-level variations,
parameter offset in an off-line processing stage. The mainwe apply a further PCA to the concatenated vectors, to
difference is that Active Blobs are derived from a single ex- obtain a combined model of the form:
ample, whereas Active Appearance Models use a training
set of examples. Sclaroff and Isidoro are primarily inter- x =X+ Q;sc 3)
ested in tracking and use an initial frame as atemplate. They B

g=8+Qyc 4)

In this section we outline how our facial appearance
models were generated. The approach follows that de-



using only a small fraction of the model sample points. Fig-
ure 2 shows typical face hypotheses generated using this
wherec is a vector ofappearanceparameters control- method. The average time for location was around 0.2sec

ling both the shape and grey-levels of the model, @nd using 10% of the model sample points.
and Q, map the value ot to changes in the shape and
shape-normalised grey-level data. A face can be synthe-
sized for a giverc by generating the shape-free grey-level
image from the vectog and warping it using the control
points described by (see [3] for details).

The 400 examples lead to 23 shape parametfers,
114 grey-level parametersy,, but only 80 combined
appearance model parametardjeing required to explain
98% of the observed variation.

Figure 1 shows an unseen example image alongside the
model reconstruction of the face patch (overlaid on the orig-
inal image).

Figure 2. Example of generated face hypothe-
ses. Average location time: 0.2sec at 10%
sampling.

Figure 1. Example of combined model represen- 4 Active Appearance Model Search
tation of an unseen image. Original image on

left. Overlaid model reconstruction on right. We now address the central algorithm: given a full

appearance model as described above and a reasonable
starting approximation we propose a scheme for adjusting
. the model parameters efficiently, such that a synthetic
3 Generating Face Hypotheses face is generated, which matches the image as closely as
possible. We first outline the basic idea, before giving
We adopt a two-stage strategy for matching the ap- details of the algorithm.
pearance model to face images. The first step is to find
an approximate match using a simple and rapid approach.
We assume no initial knowledge of where the face may 4 1 Overview of AAM Search
lie in the image, or of it's scale and orientation. A simple
eigen-face model[9] is used for this stage of the location. A
correlation score$, between the eigen-face representation
of the image dataM and the image itselfI can be
calculated at various scales, positions and orientations:

We wish to treat interpretation as an optimisation prob-
lem in which we minimise the difference between a real
face image and one synthesised by the appearance model.
A difference vectoblI can be defined:

S=[1-Mm/ 5)

Although in principle the image could be searched ex-

haustively, it is much more efficient to use a stochastic = wherelj; is the vector of grey-level values in the image,
scheme similar to that of Matast al [5]. We sub-sample  andI,,, is the vector of grey-level values for the current
both the model and image to calculate the correlation scoremodel parameters:



To locate a best match between model and image, wecompared with thanodel grey-level sample vectogg,,,
wish to minimize the magnitude of the difference vector, calculated using equation 4:

A= |6I|2, by varying the model parametets,

Since the model has around 80 parameters, this appears
at first to be a very difficult optimisation problem involving
search in a very high-dimensional space. We note, howeverThus, we can modify equation 7:
that each attempt to match the model to a new face image,
is actually a similar optimisation problem. We propose to Sc = Adg 9)
learn something about how to solve this class of problems

in advance. By providing a-priori knowledge of how to  The pest range of values 6t to use during training
adjust the model parameters during during image searchis determined experimentally. Ideally we seek to model
we arrive at an efficient run-time algorithm. In particular, 5 relationship that holds over as large a range errors,
we might expect the spatial patterndh, to encode infor- 5o a5 possible. However, the real relationship is found
mation about how the model parameters should be changegy pe linear only over a limited range of values In our
in order to achieve a better fit. For example, if the largest experiments, the model used 80 parameters. The optimum
differences between the model and the image occurred ahertubation level was found to be around 0.5 standard
the sides of the face, that would imply that a parameter thatgeyiations (over the training set) for each model parameter.
adjusted the width of the model face should be adjusted.gach parameter was perturbed from the mean by a value
This expected effect is seen in figure 3. between 0 and 1 standard deviation. The scale, angle
In adopting this approach there are two parts to the prob-ang position were perturbed by values ranging from 0
lem: learning the relationship betweéhand the errorin {5 +/- 10% (positional displacements are relative to the
the model parametersc and using this knowledge in an  face width.) After performing linear regression, we can
iterative algorithm for minimising\. calculate an R statistic for each parameter perturbation,
dc; to measure how well the displacement is ‘predicted’
by the error vectodg. The average Rvalue for the 80
4.2 Learning to Correct Model Parame- parameters was 0.82, with a maximum of 0.98 (the 1st
ters parameter) and a minimum of 0.48. Figure 3 illustrates the
shape-free error image reconstructedigy for a deviation
The simplest model we could choose for the relationship of 2 standard deviations in the 1st model parameter, and a
betweenyI and the error in the model parameters (and thus horizontal displacement of 10 pixels.
the correction which needs to be made) is linear:

0g =8i — 8m (8)

dc = AL ©)

This turns out to be a good enough approximation to
provide good results. To find\, we perform multiple
multivariate linear regression on a large sample of known
model displacementsc, and the corresponding difference
images,0I. We can generate these large sets of random
displacements, by perturbing the ‘true’ model parameters
for the images in the training set by a known amount.
As well as pertubations in the model parameters, we also
model small displacements in 2D position, scale, and
orientation. These extra 4 parameters are included in the
regression; for simplicity of notation, they can, however,
be regarded simply as extra elements of the vedtorin
order to obtain a well-behaved relationship it is important
to choose carefully the frame of reference in which the  Figure 3. Shape-free error image. Top left:
image difference is calculated. The most suitable frame of ~ original, Top right: pertubed model placement,
reference is the shape-normalised face patch described in Bottom centre: Shape-normalised difference
section 2. We calculate a difference thus: for the current image
location of the model, calculate thenage grey-level
sample vectorg;, by warping the image data at the current
location into the shape-normalised face patch. This is




4.3 Iterative Model Refinement model is fitted using accurate, hand-labelled points, for the
average and worst case respectively. The error is measured

Given a method for predicting the correction which in average grey-level difference per sample pixel, where

needs to made in the model parameters we can construct aRixels take a value from 0 to 63.

iterative method for solving our optimisation problem. For

a given model projection into the image,we calcuate the

grey-level sample error vectofg, and update the model

estimate thus:

¢ =c— Adg (10)

If the initial approximation is far from the correct solu-
tion the predicted model parameters at the first iteration will
generally not be very accurate but should reduce the energy
in the difference image. This can be ensured by scaling
A so that the prediction reduces the magnitude of the
difference vectordg|?, for all the examples in the training
set. Given the improved value of the model parameters,
the prediction made in the next iteration should be better.
The procedure is iterated to convergence. Typically the
algorithm converges in around 5-10 iterations from fairly
poor starting approximations - more quantitative data are
given in the results section.

5 Experimental Results
Figure 4. Example test images with ’true’ re-
The method was tested on a set of 80 previously unseen construction, based on hand annotation
face images. Figure 4 shows three example images used for
testing and the ‘true’ model reconstruction, based on hand-
annotation of the face location and shape.
Figure 5 illustrates the result of applying AAM search to
these images. The left hand image shows the original over-
laid with the initial hypothesis for face location. In practise,
we usually have better starting hypotheses than shown here,
however, in order to illustrate the convergence properties of
AAM search, we have deliberately displaced the hypothe-
ses generated by the stochastic generator, so as to make thg
problem ‘harder’. Alongside the initial approximation are
shown the search result afters iterations 1,5 and 12, respec-
tively.

5.1 Reconstruction Error

We tested the reconstruction error of AAM search
over a test set of 80 unseen images. The reconstruction
error for each image is calculated as the magnitude of the *
shape-normalised grey-level sample vedi&|?. Figure 6
show a graph of reconstruction error versus iteration:

Two plots are shown: The solid curve is a plot of average
error versus iteration for the test set. The dashed curve
shows the worst case encountered in the test. The two
horizontal lines indicate the error measured when the

Figure 5. Search results: Initial location, It-
eration 2, lteration 5, Iteration 12
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Figure 6. Search Convergence :The solid curve
is a plot of average error versus iteration for
the test set. The dashed curve shows the worst
case encountered in the test. The two horizon-
tal lines indicate the error measured when the
model is fitted using accurate, hand-labelled
points, for the average and worst case respec-
tively. The error is measured in average grey-
level difference per sample pixel, where pixels
take a value from 0 to 63.

6 Discussion and Conclusions

We have demonstrated an iterative scheme for fit-
ting an Active Appearance Model to face images. The

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

method makes use of learned correlation between model-[10]

displacement and the resulting difference image. Given a
reasonable initial starting position, the search converges
quickly, and is comparable in speed to an Active Shape
Model. Using AAMs real-time tracking should be possible
on a standard PC. However, since all the image evidence
is used, the procedure is more robust than ASM search
alone. We are currently investigating further efficiency
improvements, for example, subsampling both model
and image, as was used in the method for hypotheses
generation. It is intended to use AAM search to track faces
in sequences, using the tracking scheme of Edwatds

[3]. This scheme requires both off-line and on-line 'de-
coupling’ of sources of variation due to ID,Pose,Lighting
and Expression. The decoupling makes use of the full
appearance model and thus provides more information
when used with full AAM search than with ASM search
alone. The dynamic constraints and evidence integration
of the tracking scheme provide further robustness and thus
we expect excellent performance from a full AAM tracking
scheme.
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