5.48.

(a)

()

| Property Applies? | Comments

Stable No For a stable, causal system, all poles must be
inside the unit circle.

IIR Yes The system has poles at locations other than
z=0o0r z = co. .

FIR No FIR systems can only have poles at z = 0 or
z = 0.

Minimum No Minimum phase systems have all poles and zeros

Phase located inside the unit circle.

Allpass No Allpass systems have poles and zeros in conjugate
reciprocal pairs.

Generalized Linear Phase No The causal generalized linear phase systems
presented in this chapter are FIR.

Positive Group Delay for all w No This system is not in the appropriate form.

| Property | Applies? | Comments

Stable Yes The ROC for this system function,
|| > 0, contains the unit circle.

(Note there is 7th order pole at z = 0).

IIR No The system has poles only at z = 0.

FIR Yes The system has poles only at z = 0.

Minimum No By definition, a minimum phase system must

Phase have all its poles and zeros located
inside the unit circle.

Allpass No Note that the zeros on the unit circle will
cause the magnitude spectrum to drop zero at
certain frequencies. Clearly, this system is
not allpass.

Generalized Linear Phase Yes This is the pole/zero plot of a type II FIR
linear phase system.

Positive Group Delay for all w Yes This system is causal and linear phase.
Consequently, its group delay is a positive
constant. '

| Property Applies? | Comments |

Stable Yes All poles are inside the unit circle. Since
the system is causal, the ROC includes the
unit circle.

IIR Yes The system has poles at locations other than

' z=0o0rz=o00.

FIR No FIR systems can only have poles at z = 0 or
z = 00, -

Minimum No Minimum phase systems have all poles and zeros

Phase located inside the unit circle.

Allpass Yes The poles inside the unit circle have
corresponding zeros located at conjugate
reciprocal locations.

Generalized Linear Phase No The causal generalized linear phase systems
presented in this chapter are FIR.

Positive Group Delay for all w Yes Stable allpass systems have positive group delay
for all w.
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6.23. Causal LTI system with system function:

1- 171
H = 5 )
2) (1—Lz1+5272)(1+ 2271)
(a) (i) Direct form L
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(ii) Direct form IIL.
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(iii) Cascade form using first and second order direct form II sections.

1-1z71 1
Hz)= 2 .
@ = = )
So ;
501=1,bll=_§,521=0,
b02=1 ,blzz(),bzz:()and
an=-;,a2=0,a=1 y G2 = —3.
z[n] y[n]
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(iv) Parallel form using first and second order direct form IT sections.
We can rewrite the transfer function as:

27 98 _ 36 ,-1
— 125 25 i2
H{z) = i+ T
1+ red 1- :Z-Z - §Z

So

_ 27 -
€1 =135 ,e11 =0,
epr = & ey = — 38 and

021‘— 125 » ¢12 = 1251) L
1= 5,021 =0,012 =35, a2 =-1
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(v) Transposed direct form II
We take the direct form II derived in

part (i) and reverse the arrows as well as exchange the
input and output. Then redrawing th

e flow graph, we get:

112

(b} To get the difference eqﬁa’cion for the flow graph of part (v}

in (a), we first define the intermediate
variables: wy[n] | w, [n] and w3[n] . We have:

]
N



(1) unn] = s} +uwn—1]
(2) weln] = % {n}+wsln— 1] — —z[n]
5

Combining the above equations, we get:

vin] — vl = 1)+ gpvln = 2+ 1ol — 3] = sl = Zofn — 1

Taking the Z-transform of this equation and combining terms, we get the following transfer func-
{lon:
1~ é—z"l

B TP S R AV B Y
1 A oy S o 12

H(z)

which is equal to the initial transfer function.
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6.26. {a) Wecan rearrange H(z) this way:
1

(1_}_2..1)2 A (1+3—1)2 i ~1 Z.M .02
(1+27) 1-2z-14 72

Hiz)=

T—dzt4 -2 115 $272

The solution is not unique; the order of the denominator 2nd-order sections may be rearranged.

(b)

el =l + 2efe - 1) 4 sl - 94 Lufn 1) g g
un] = uln]—op - 1} - él-v{n -2
wn] = un)+ 20fn - 1]+ vfn - 7

=,
=
it

wln) + 2wl ~ 1) 4 ~2}+2y{n—~1j—§y[ ~3.



e

L

6.26. {a) Wecan rearrange H(z) this way:
1

(1_}_2..1)2 A (1+3—1)2 i ~1 Z.M .02
(1+27) 1-2z-14 72

Hiz)=

T—dzt4 -2 115 $272

The solution is not unique; the order of the denominator 2nd-order sections may be rearranged.

(b)

el =l + 2efe - 1) 4 sl - 94 Lufn 1) g g
un] = uln]—op - 1} - él-v{n -2
wn] = un)+ 20fn - 1]+ vfn - 7

=,
=
it

wln) + 2wl ~ 1) 4 ~2}+2y{n—~1j—§y[ ~3.



