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6.43. (a)
1 1
y[n}:zy{n—-l]-}-é—, n>0
BTN E e
=32 (1) =5

For large n, y[n] = (1/2)/(3/4) = 2/3.
(b) Working from the difference equation and quantizating after multiplication, it is easy to see that,

in the quantized case, y[0] = 1/2 and y[n] = 5/8 for n > 1. In the unquantized tase, the output
monotonically approaches 2/3.
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(c) The system diagram is direct form II:
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So .
Wy jw FWy 2
Y(e) = BE)X () = 73

which implies that y{n] = (1/2)(1/4)", which approaches 0 as n grows large.
To find the quantized output (working from the difference equation): y[0] = 1/2, y[1] = 1/8, and

yln]=0forn > 2.
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6.44. (a) To check for stability, we look at the poles location. The poles are iocated at

"2/ 0.52+0.84; and 'z =~ 0.52 — 0.847.

Note that
[z)2 ~ 0.976 < 1.

= The poles are inside the unit circle, therefore the system function is stable.

(b) ¥ the coefficients are rounded to the nearest tenth, we have

1.04 = 1.0 and 0.98 = 1.0.

Now the poles are at
s i3
z.;,l._.é_‘/_?’: ;mdzz}__,g__\/_:

Note that now,
|z)* = 1.

The poles are on the unit circle, therefore the system is not stable. |

6.45. The flow graphs for networks 1 and 2 respectively are:

{a) For Network 1, we have:

un(n} = z[n] — a®z[n — 8
wyln] = ay[n — 1} +wiln
yln] = wa[n]

Taking the Z—transform of the above equations and combining terms, we get:
Y(2)(1-az"?) = (1= ab27%)X(2)
That is: '
1-af278
HE) =g
For Network 2, we have:

yln] = zln] + azln — 1]+ d’zln — 2] + .. +-a'zln ~ 7).
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Taking the Z~transform, we get:

Yi(z)=(1+azt +a%27 %+ .. +a"27) X ().

So:
8 -8
HZ) =14+az  +a%27% + . +a"27 7= tma’e
1—az™1
(b) Network 1:
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Network 2:

) The nodes are circled on the figures in part (b).

) In order to avoid overflow in the system, each node in the network must be constrained to have

a magnitude less than 1. That is if wy(n] denotes the value of the kth node variable and hi(n]
denotes the impulse response from the input z{n} to the node variable wi[n] , a sufficient condition
for lwginl] < 11is
=
Trnas < TES——TTT—T
T o Ihalml

In this problem, we need to make sure overflow does not occur in each node, i.e. we need to take
the tighter bound oR .Zmas- For network 1, the impulse response from ws[n] to yln] is a™uln},
therefore the condition to avoid overflow from that node to the output is

Wnas < 1 — |al.

Where we assumed that |a] < 1. The transfer function from «[n] to wi[n] is 1 — a®2z78, therefore
to avoid overflow at that node we need:

w;[n] < mmom(l - aB) <1- [a}
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We thus conclude that to avoid overflow in network 1, we need:

1—|al

Zrmez < .
1-a

Now, for network 2, the transfer function from input to output is given by 8[n]+ad{n—1]+a’iln -
%) + ... + a78[n — 7], therefore to avoid overflow, we need:

1
< .
Fmaz S T e[+ a2 + .+ Jof]

| 2
(e) For network 1, the total moise power is TZ—%:TQ For network 2, the total noise power is 7o?, For
network 1 to have less.noise power than network 2, we need

202 4
1= Ia3'< Tog-

Thatis:r 2 g j__‘g;
‘Q|<§- =) M\\ < 1

The largest value of |a| such that the noise in network 1 is less than network 2 is therefor %



