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   ECE 8440 Review for Quiz 2                                    Spring 2015 
 
 
Units 9,10 - Generalized Linear Phase 
 
 

 H(ejω) = A(ejω)e− jαω +β      (equation 5.125) 
 
where   A(ejω ) is real, but may be negative (and therefore contribute π to the phase). 
 
For a system having generalized linear phase, 
 

 
h(n) sin[(β + ω(n − α))] = 0⎡

⎣
n=−∞

∞

∑     (equation 5.130) 

 
If  β = 0  or β = π      and if          2α = integer , 
 
then 
 

  h(n) = h(2α − n) ,  all n     (equation 5.131c) 
 
This is the same as 
 
  h(α + n) = h(α − n) 
 
If   β = π / 2  or   β = 3π / 2    and if      2α = integer , 
 
then 
 
 
  h[2α − n] = −h(n) .      (equation 5.133c) 
 
This is the same as 
 
  h(α + n) = −h(α − n)  
 
Note:  If    2α ≠ int eger , then neither of the above symmetry conditions hold true. 
 
Causal version of above symmetry conditions when   2α = int eger : 
 
  h(n) = h(M − n),    0 ≤ n ≤ M        (Types I and II filters) 
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and          h(n) = −h(M − n),    0 ≤ n ≤ M       (Types III and IV filters). 
Location of zeros for Types I-IV generalized linear phase filters 
 

If  there is a zero at  z0 = r0e
jω0 , then there must also be a zero at 

 

1
z0

= 1
r0

e− jω0  

If order for h(n) to be real, the complex conjugates of each of the above zeros must also 
be included in H(z).  This implies a group of 4 zeros: 
 

 r0e
jω0    ,       r0e

− jω0    ,       
 

1
r0

ejω0   ,    and       
 

1
r0

e− jω0  

 
Special cases: 
 
If    r = 1   and    θ ≠ 0,π :     Group size = 2:             ejω0    and      e− jω0  
 

If    r ≠ 1   and    θ = 0 or π : Group size = 2:        r   and    
 
1
r

        or      −r  and  
 
−1

r
 

 
If   r = 1   and    θ = 0 or π :  Group size = 1:         1     or      -1 
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Unit 11 (Filter Structures) 
 

 
- Direct Form I 
- Direct Form II 
 
-Cascade Forms 
-Parallel Forms 
 
- Transpose Forms 
 
-Signal flow graphs 
 - Find H(z) using node equations in signal flow graph 
 - Find H(z) using Mason's Rule 
 - Determine order of node updating in signal flow graphs. 
 
- FIR structures that take advantage of symmetry of h(n) for Types I-IV filters. 
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Unit 12 (Using Finite Precision Arithmetic to Implement Filters) 
 
 
Two's Complement Representation Using B+1 bits 
 
If a number is represented as a two's complement fraction having the form 
 
 

 
x = Xm −b0 + bi2

−i

i=1

∞

∑
⎛

⎝
⎜

⎞

⎠
⎟       (equation 6.75) 

 
Then the resolution for representing the value is  
 

 Δ = Xm2−B  
 
and the quantization error will be bounded by 
 
 −(Δ / 2) < e ≤ (Δ / 2) . 
 
 
Coefficient quantization 
 
If filter coefficients are quantized, the effect is: 
 
- finite number of possible location of poles a zeros 
- finite number of possible frequency response functions 
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Unit 13 - Round-off Noise due to Multiplications in Digital Filters 
 
Assume that the input e(n) is white noise due to round-off and the average power of this 
noise is  σe

2 .  Also assume that the frequency response of that portion of the system 

between the noise entry point  and the system output f(n) is   Hef(e
jω ) . 

 
The power density spectrum of the noise in the output is due to round-off error with 
average power of   σe

2  is  
 
Φff(e

jω) = σe
2 | Hef(e

jω) |2           (equation 6.103) 
 
where  Hef(e

jω)  is the frequency response of that portion of the system between the 
noise entry point  and the system output. 
 
The average power of the output noise due to round-off error is  
 
   E[f2(n) ]  which is equal to   ϕyy(0)  

  
where 

 
ϕff(0) = 1

2π Φff(ejω)
−π

π

∫ dω    

 

 
=

σe
2

2π
| Hef(e

jω) |2
−π

π

∫ dω        

 
Applying Parseval's relation, we can also express the above as 
 

  
ϕff(0) = σe

2 | hef(k) |2
=−∞

∞

∑     
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Using a z-transform approach to finding   ϕff (0) : 
 

 
Γff(z) = σe

2Hef(z)Hef
* 1

z *
⎛

⎝
⎜

⎞

⎠
⎟  

 

 
σf

2 = γ yy(0) = σe
2 Ak

k=1

N
∑

⎛

⎝
⎜

⎞

⎠
⎟  

 
where 
 
 

 
Γff(z) = σe

2 Ak
1− dkz−1

k=1

N
∑ −

Ak
*

1− (dk
* )−1z−1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

       (equation A.64) 

 
and where 
 

 

H(z) = A
(1− cmz−1)

m=1

M

∏

(1− dkz
−1)

k=1

N

∏
 

 
 
Example: For the following second order filter with no zeros, 
 

 
H(z) = 1

(1− rejθz−1)(1− re− jθz−1)
 

 

 
A1 + A2 = 1+ r2

1− r2

⎛

⎝
⎜

⎞

⎠
⎟

1
1− 2r2 cos(2θ) + r4  

 
so that 
 

 
σf

2 = γ yy(0) = σe
2 1+ r2

1− r2

⎛

⎝
⎜

⎞

⎠
⎟

1
1− 2r2 cos(2θ) + r4  
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Unit 14 - More on Round-Off Noise in Digital Filters 
 
If products due to multiplication are rounded to a B+1 bit two-complement 
representation, the average noise power of each round-off noise source is 
 

 
σe

2 = 2−2B

12
 

 
- Points of injection of round-off noise for different filter structures 
 
- Combining round-off noise sources to a larger equivalent noise source in different filter 
structures 
 
For Direct Form I 
 
Equivalent noise source: 
 

 
σe

2 = (M +1+ N)2−2B

12  

 
and 
 

 
Hef(z) = 1

A(z)
 

 
where 
 

  
H(z) = B(z)

A(z)
. 

 
 
The total output noise power due to internal round-off error is therefore 
 

 
σf

2 = (M +1+ N)2−2B

12
dω

| A(ejω) |2−π

π

∫                  (equation 6.106) 

 

 
= (M +1+ N)2−2B

12 | hef(n) |2
n=−∞

∞

∑ , 

where   hef(n)  is the unit sample response corresponding to 
  
Hef(z) = 1

A(z)
. 

Note:  The z-transform method for finding  σf
2 = γ yy(0)  could also be used. 
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For Direct Form II 
 
The total average noise power in the output can be expressed as 
 

 
σf

2 = N2−2B

12
1

2π
H(ejω)

2
dω + (M +1)2−2B

12−π

π

∫  

 
or as  
 

 
σf

2 = N2−2B

12 h n⎡⎣ ⎤
⎦

n=−∞

∞

∑
2

+ (M +1)2−2B

12  

 
A third option  is to use the z-transform based approach to find  σf

2  as 
 

 σf
2 = γ ff(0) . 

 
Scaling to Prevent Overflow 
 
Assume that an input signal is bounded by   
 

 | x(n) ≤ xmax  
 
To guarantee no overflow at all critical nodes of a filter, multiply the input x(n) by a scale 
factor   s  where the value of s is selected to satisfy: 
 

 

s ≤   1

xmax( )max
k

| hk(m)
m=∞

∞

∑ |
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 
 
where  
 

  hk(m)  is the unit sample response of the part of the system between the input and  
node k. 
 
A less conservative method to choosing  s :    Choose  s  to satisfy 
 

 

s ≤   1
xmax( )max

k,|ω|<π
|Hk(e

jω )|
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A third (and even less conservative) method for choosing  s  is 
 

s ≤  1

| x(n)
n=∞

∞

∑ |2
⎛

⎝⎜
⎞

⎠⎟
max

k
| hk(n)

n=∞

∞

∑ |2
.

 
 
- Critical nodes for scaling when non-saturating two-complement arithmetic is used 
 
 - For Direct Form I  (output node only)   )   (see figure 6.59) 
 - For Direct Form II (input node and output node)   (see figure 6.61) 
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Unit 15 - More on Scaling and Round-Off Noise 
 
 

Interaction between scaling and round-off noise 
 
-Reducing the input magnitude by scaling can reduce the ratio of signal-to-quantiation 
noise in the output.  (Review example  6.13) 
 
- It is best to use distributed scaling in cascade implementations instead of  
reducing the entire signal as it enters filter (and reducing none of the  internally generated 
round off noise) 
 
- Procedure for implementing distributed scaling  (see example in section 6.9.3) 
 
Grouping of poles and zeros and ordering of second order sections in cascade 
implementations of digital filters 
 
- No. of possible ways to group N complex conjugate zero pairs with N complex 
conjugate pole-pairs is   N!  
 
- There are   N!  ways to order the resulting  N  second order sections. 
 
- If we consider four options for implementing each second order section (e.g., Direct 
Form I, Direct Form II, transpose of Direct Form I, and transpose of Direct Form II), the 
total number of distinct implementation options is   4(N!)2  
 
"Rules of thumb" for selecting the desired configuration of second order section for a 
filter: 
 
1. Pair the pole that is closest to the unit circle with the zero that is closest to it. 
 
2. Repeat Rule 1 until all poles and zeros have been paired. 
 
3.  Order the resulting second-order sections according to either increasing closeness to 
the unit circle OR decreasing closeness to the unit circle. 
 
Limit Cycles 
 
- What a limit cycle is 
- What causes a limit cycle  
 


