ECE 8440 - Unit 1 1

Review the Discrete-Time Fourier Transform (DTFT)
The DTFT of a discrete time signal x(n) is defined by
X(e*) = i x(n)e " (¥)

N=—x

If X(e*)is known, x(n) can be found using the inverse relation:
1 = o
x(n) = — | X(e’®)e’d ® %
(n) Zn_'[t (e*)e""do (+)
Necessary and sufficient condition for uniform convergence of (*) is:

i|X(n)|<oo (%)

N=—c

When condition (%) is not satisfied, there are cases where the summation of () may still
converge in a non-uniform sense and where x(n) andX(e®)are related by equation(x*).

For example, if x(n) does not satisfy condition (%) but does satisfy the following condition:

3 Ix(n)FF <o

N=—c

then the summation of (x) converges in the mean-squared sense to a frequency function X(e**). An
example of this case is the ideal low-pass filter whose unit sample response is given by




h (nN)=——=, nz0

Example 2.18 - Square-Summability for the Ideal Lowpass Filter (p. 51)

If we define

H, (e*) = i hlp(n)e’j‘”n
n=-M

then

lim,, _ [IH_(e*)-H,(e*)F do=0
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Figure 2.21  Convergence of the Fourier transform. The oscillatory behavior at
o = w, is often called the Gibbs phenomenon.



There are some signals which are neither absolutely summable nor square summable but for
which a Fourier Transform representation is still useful. The following example demonstrates
such a case.

Example 2.20 - Fourier Transform of Complex Exponential Sequences
Start with the following X(e*®) which consists of a periodic impulse train and use (+*)to find x(n):

X(e*) = Y 2m8(w - o, +2mr) (2.143)

F=—co

x(n) = é T {i 218(w — o + 2nr)} e dw

F=—co

-7

- ]E {i 30— o+ an)}ej““‘ do

[=—co

-T

Since the above integrand involves impulses spaced by 27, there is exactly one impulse over -t <w <z
which is the range of the integral. This impulse function is located at ® = w, —27r for some
integer r. The value of the integral is therefore

j(o_—2nr)n jo n . .
g% = @’"= complex exponential signal

Another example: cos(e_n+¢)

ej(ooon+(p) n e—j(u)on+<p) - ejq,ej(oon e_jq,e—j(oon

+
2 2 2

cos(o n+ ) =



Applying above results, we can obtain X(e*®) for x(n) = cos(e_n+¢) as

. i = -jo
X(e*) = e? Z 2nd(w —w_+27r) + 67 2 2nd(w +w_ + 2mr)

r=—co

oo

r=—c

= [nej“’S(m - +2nr)+ne *5(w+ o, + ZJtr)}

r=—co

Table 2.3 below shows more Fourier Transform pairs)

TABLE 2.3 FOURIER TRANSFORM PAIRS
Sequence * Fourier Transform
1. §[n] 1
2. 8[n — ng] e~ Jwno
o0
3.1 (—o0 < 1 < ) Z 278(w +2mk)
' k=-00
4. a"uln] (ja] <1) —J—
1—ae Il
1 (o]
5. u[n] m‘+ Z JT(S((I)-}*ZJTk)
=—00
i 1
6. (n+1a"uln] (la} <1) m
rsinwp(n + 1) 1
7 sinwp un] (rl<1) 1—2rcoswpe=i® 4 r2e=i20
sin wen joy _ ) L ol <o,
i X(e )_{Q, we<lol <7
f1, 0sn<M sinfo(M +1)/2] _joup
9. x[n] = {0, otherwise sin(w/2)  ©
o .
10. ei®@on Z 278(w — wo + 27k)
k=-o00 .
(o]
11. cos(won + @) Z [e/®8(w — wo +27k) + we™5(w + wo + 27K)]

k=—00




| TABLE 2.1 SYMMETRY PROPERTIES OF THE FOURIER _TRANSFORM

Sequence Fourier Transform
) | X(e)?)
1. x*[n] X*(e1?)
2. x*{—n] X*(el®)
3. Re{x[n]} Xe(e/®) (conjugate-symmetric part of X (e1°))
4. jJImix[nl} X, (e/®) (conjugate-antisymmetric part
| of X(e/®))
5. x,[n] (conjugate-symmetricpart ~ Xg(e/”) = Re(X (e/*)}
of x{;z])
6. x,[n] (conjugate-antisymmetric  j X (e7?) = jTm{X(e!)}
part of x{n})
| The following properties apply only when x[n} is real:
7. Any real x[#n} X(e/®)y = X*(e”/®) (Fourier transform is
conjugate symmetric)
8. Any real x[n] Xp(e!®) = Xp(e™/®) (real partis even)
9. Any real x[n] Xi(el®) = — X;(e™ 1) (imaginazy part is odd)
10. Any real x[n] _} | X (e/®)} = | X(e~/®)| (magnitude is even)
11. Any real x[n]  aX(el)=—<aX (e"i®) (phase is odd)
12. x.[n] (even part of x[n}) Xr(el®)

13, x,[n] (odd part of x[n]) Xl




x(n)+ x * (-n)

Conjugate symmetric part of x(n): X.(n) = 5 = x,(=n)
x(n) —x*(-n .
Conjugate anti-symmetric part of x(n): X, (n) = (n) > ) = —X,(-n)

x.(n) = x(n) + x(-n)

For the special when x(n) is real: 5

= even part of x(n)

() = X = x(0)

5 = odd part of x(n)



TABLE 2.2 FOURIER TRANSFORM THEOREMS

Sequence Fourier Transform
x{}z} .X{_ef‘”)
yin] Y(e’*)
1. ax[n] + byln] aX(el*) + bY(e?)
2. x[n—ng] (ng an integer) e~ iond X (el®)
3. /@0 xln] X (efl@~wo)y
4. x{-nj ‘}((g—ja))
X*(el9y if x[n] real.
3. nx {ﬁ} ;‘d (6’ _2
< , dCL)
6. x[n}x y[n] X(el®yy(el®)

Parseval's theorem:

o0 -
.y 1 ' :
; 2 . - JoniZ g, .
8. E xlallt = 7 j: [ X (e )] dw

=00

o0 1 T

9. x[n]y*in] = fj?jl XYY (e/Ydw
. T

Jzm e KO

Y ARV
= f X()v(e/' o dp
Ty




Section 4.4 - Discrete-Time Processing of Continuous-Time Signals

Consider the system structure shown in Figure 4.11 on p. 153:

. | Discrete-time N
e C/D > system > D/C I

Figure 4.10 Discrete-time processing
_________________________________ ] ~of continuous-time signals.

An example based on this structure:

Example 4.4 - Discrete-Time Implementation of an Ideal Continuous-Time Bandlimited
Differentiator

Assume that we want the overall effect of the above system to be an ideal differentiator of the
analog input, i.e., we want

d
y (1) = a[xcm}

In the s-domain this corresponds to the system operation Y (s) = sX_(s), which can be expressed
in the analog frequency domain as

H.(jQ) = jQ



To obtain a discrete time implementation, consider a band-limited version of the
above. (Assume that the input in bandlimited and that it is sampled at a rate that
exceeds the Nyquist rate.)

H(jQ)=jQ  for ol < =
and
H (=0  for Q1 > %

The corresponding digital filter can be obtained by setting

H(ej“)=JTm for lol < =&

(As with all digital filters, x(e») will be periodicin ® with period = 27.)
The unit sample response corresponding to H(e!”) can be found using:

1 & o
h(n) = — [ H(ei®)el d
(n) zn_{ (e™)e™ do

1 7% jo
— glon g ® 3K ok ok
an T ® ( )

This integral can be evaluated using “integration by parts”:
Let u=w, then du=dw

and let V= e’ sothat dv=jne’dw



Therefore, the right side of Equation (+*#+) can be written as
1

ZnnT_-[Udv (*****)

Using integration by parts to perform the integral:

Tudv =uvI® —Tvdu

_ nz0
Jjni-=
- - el —e
=nle™+e™]-| ——| n=z0
jn

= 2ncos(mn) — [ﬂsin(nn), nz0

Therefore, Equation (xxxx%) becomes

h(n) = L{zn cos(mn) - [g}sin(nn)}, N0
2nnT n

n12T [nn cos(nn) — sin(nn)}, n«0
T

10



Since sin(rn) = O for all n, the contribution of this term to h(n) is 0 except for the n = 0 case, for 11

which the numerator and denominator are both = 0). Therefore, the overall expression for h(n)
becomes:

h(n) = l_r[cos(nn)} fornz0 (equation 4.47 in text)
n
and

h(n)=0 for n=0 (since the integral of equation (+##*)= 0 for the n = 0 case)

Example: lllustration of Example 4.4 with a Sinusoidal Input

Consider the analog input to the above digitally-implemented bandlimited differentiator to be
x.(t)=cos(Qt) with Q,<x/T (i.e. the sampling rate is adequate)

The output of the ideal C/D converter will then be:

x(n)= cos(a)on) where w,=Q,T <.

As already shown, the DTFT of x(n) = cos(®w,n) can be expressed as

oo

X(e®) =Y, [ nd(0 -, +2nr) + (o + o +27r) |

r=—co

For |w| <7 (the frequency range that will be involved in determining y(n)), this can be expressed as

X(e*) =m0 - )+ md(0+o ) lo| <7



The output of the discrete-time part ("middle part") of the overall system of Figure 4.11 is 12
therefore

Y(e*) = H(e*)X(e*)
Y(e*) = 2 mb0 -0, )+ (0 +0,)]

jo m
T

jo r

[30-0,)]- [3@+0)]  for | <7

If y(n) is the input to an ideal D/C converter, the overall analog output is then

o=QT

Y.(jQ) = TY(e®)|

=TY(e™), 1ok X
T

jo m

=T ?[S(QT -Qm)]-

jo_w

[S(QT + QOT)}}

[ jo_m 1 jo_m 1
=T (‘zrn?[S(Q—Qo)}—g?[8(9+go)ﬂ

= jnQ3(Q-Q ) - jrQ2d(Q+Q )

1 _jot
Since the inverse Fourier Transform of 8(Q-9)is3,.¢

the time-domain counterpart of v, (jQ) is

(ejQOt _ e—ont)

y,(0=j0,, e - jo,Je ¥ = jo, 2

°2 °2



=-Q sin(Qt)  which is indeed the derivative of the analog input, x(t).

Section 4.5 Continuous-Time Processing of Discrete-Time Systems.

The following system configuration represents continuous-time processing of discrete-time
signals:

[ e e e ey e e — e e — i —

Figure 415 Continuous-time
____________________________ processing of discrete-time signals.

(This is complementary to the system considered earlier: Discrete-Time Processing of
Continuous-Time Systems)

Note: This approach is not typically used to implement discrete-time systems, but it provides a
framework for interpreting certain discrete-time systems.

The ideal D/C converter can be represented by a system that includes an analog impulse
generator followed by an ideal low pass filter with cutoff frequency of z/Tand a gain of T. (See
Fig. 4.7, p. 164). Therefore, X_(jQ) = 0 for|Q>x/T. Furthermore, the "reconstruction formula"
associated with the Sampling Theorem can be used to relate x (t) with x(n), as follows:

13



- sin[r(t-nT) / T]
%)= 2 XM= T /T 14

The frequency-domain operations associated with the process represented in Figure 4.15 are as
follows:

X_(j) = TX(e"™) Q<7/T
Y (j9) = H ()X (jQ)  |o<n/T

Y(e®) = %YC(J%)), ol <7

Combining the above three relations and using the fact that 0 =Q/T,
oy jo jo
Y(e®) = —|H ()X (=
(e*) T{ c(T) °(T)}

_1

—
= [Hc( = )TX(e )]

_ HC(J%O)X(ej‘“), ol <

Therefore, we can write
Y(e*) = X(e*)H(e*)
where

HE™) =HUP) ol <



Now consider an example which makes use of the above system structure: 15

Example 4.7 Noninteger Delay (essentially an interpolation between samples of a discrete time
signal)
Consider the analog part (the middle part) of the system of Figure 4.15 to be

HC(JQ) — e—jQAT

Then vy (t)=x_(t-AT)

where A is not necessarily an integer.

The overall output y(n) corresponds to sampled values of y,(¢) at t = integer multiples of T. That
is,

y(n) =y _(nT)=x_(nT - AT) .

In the frequency domain,

H(e*) = H_(jQ) o <m

—ie

_ oo (o‘ <m  which can be written as H(e*®) = e, “D‘ =T

—le



Figure 4.16 relates y(n) to x(t) for the case of A=1/2 :
s x(0)
(1%
T b
0 T 2T :
@

) /yc(r)=xc(z—§)

. /]//] \\I\—{//[ P/y[n]
0 T 2T :
(®)

Figure 4.16  continuous-time processing of the discrete-time sequence in part
(a) can produce a new sequence with a “half-sample” delay, as in part (b)

Another time-domain interpretation of the above. Combining

y(n) = x_(nT - AT) = x_(t - AT)

t=nT
and

N sin[r(t—nT)]
x(0)= 2 O Ty /T

and changing the summation index from n to k gives:

< sin[x(t — AT —KT) / T]|
yin = kz X = aT k) /T

t=nT

16



_ i X(k)sin[n(n— k-A)]

bl n(n—k_n)  (@ssumingthat Ais not an integer) .

This represents a convolution of x(k) with

sin[n(n - A)]
n(n—A)
Note that the above h(n) represents in IIR filter. If Ajs an integer n_, then
y(n)=x_(nT-nT)=x_((n-n_)T)

which corresponds to
h(n)=68(n—n,)

h(n) =

, all n (where againAis not an integer)

Example 4.8
Consider a discrete-time system whose output is the (M+1)-point moving average of its input. That is,

-I M
=— -k
y(n) M+1|§;X(n )
The corresponding unit sample response is
-I M
h(n)=—— ) 8(n-k
(n) M+1.§; (n-k)

The frequency response of this system is
H(e*) = ) h(k)e ™
k

_ 1 SIn[(D(M + 1) / 2] e_ij/z
M+1)  sin(@/2) ‘“" T




This can be represented as the cascade of two systems 18
H,(e*) andH,(e*) where

1 sinfe(M+1)/2]

H,(e") = :
! M+1  sin(lm/2)

and H,(e*)=e"?

The overall system is shown below in Figure 4.17:

H(el®)
r——‘—-‘_—"'—_—'——; _____________ A
: ‘ I
—— - |
[ 1 sin(w(M+1)/2) . |
—> (M > oMz |y
d L Me1 sin@d)  [Nupp | [ yin]
| T . |7
L | ‘

Figure 4.17 The moving-average system represented as a cascade of two systems.

The magnitude response of the filter depends entirely upon H, (e”*).
H,(e*) in a linear phase term that represents a pure time delay.

If M is an even integer, then the delay corresponds to an integer no. of samples (M/2 samples).
If M is an odd integer, then the delay of M/2 corresponds to delay of an "integer plus one-half".




This is shown in Figure 4.18 below, for the case of M=5 (a 6-point moving average) when the 139
input is x(n) = cos.25mn).
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4.18 lllustration of moving-average filtering. (a)Input signal x[n] = cos(0.25mn).
(b) Corresponding output of six-point moving-average filter.

The time-domain expression for the output can be obtain by first writing the input as
ej.251|:n + e—j.251|:n

cos(.25xn) = >

and then

y(n) — H(ej.ZSN)%ej.ZSn:n + H(e—j.ZSﬂ:) l e—j.251|:n



For M =5, this resolves to

y(n)

_ l sin[3(.25m)] e-i(25m)5/2j.25m | l sin[3(—.25m)] @i(:25%)5/2g-j.25m
2 6sin(.125x) 2 6sin(-.125x)

— .1540e/25™(-25) | 1540e }-25™(n-25)

=.308cos[.25n(n-2.5)]  (Note the delay by a non-integer no. of samples.)

20



