

Review the Discrete-Time Fourier Transform (DTFT)

The DTFT of a discrete time signal $x(n)$ is defined by

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} \quad (*)$$

If $X(e^{j\omega})$ is known, $x(n)$ can be found using the inverse relation:

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega \quad (**)$$

Necessary and sufficient condition for uniform convergence of $(*)$ is:

$$\sum_{n=-\infty}^{\infty} |x(n)| < \infty \quad (***)$$

When condition $(***)$ is not satisfied, there are cases where the summation of $(*)$ may still converge in a non-uniform sense and where $x(n)$ and $X(e^{j\omega})$ are related by equation $(**)$.

For example, if $x(n)$ does not satisfy condition $(***)$ but does satisfy the following condition:

$$\sum_{n=-\infty}^{\infty} |x(n)|^2 < \infty$$

then the summation of $(*)$ converges in the mean-squared sense to a frequency function $X(e^{j\omega})$. An example of this case is the ideal low-pass filter whose unit sample response is given by

$$h_{lp}(n) = \frac{\sin(\omega_c n)}{\pi n}, \quad n \neq 0$$

$$= \frac{\omega_c}{\pi}, \quad n = 0$$

Example 2.18 - Square-Summability for the Ideal Lowpass Filter (p. 51)

If we define

$$H_M(e^{j\omega}) = \sum_{n=-M}^M h_{lp}(n)e^{-j\omega n}$$

then

$$\lim_{M \rightarrow \infty} \int_{-\pi}^{\pi} |H_{lp}(e^{j\omega}) - H_M(e^{j\omega})|^2 d\omega = 0$$

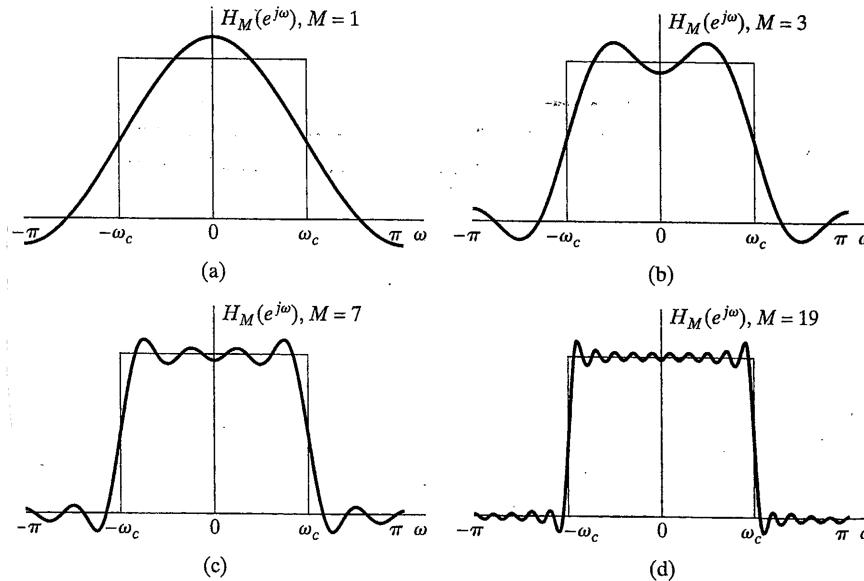


Figure 2.21 Convergence of the Fourier transform. The oscillatory behavior at $\omega = \omega_c$ is often called the Gibbs phenomenon.

There are some signals which are neither absolutely summable nor square summable but for which a Fourier Transform representation is still useful. The following example demonstrates such a case.

Example 2.20 - Fourier Transform of Complex Exponential Sequences

Start with the following $X(e^{j\omega})$ which consists of a periodic impulse train and use (**) to find $x(n)$:

$$X(e^{j\omega}) = \sum_{r=-\infty}^{\infty} 2\pi\delta(\omega - \omega_0 + 2\pi r) \quad (2.143)$$

$$\begin{aligned} x(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\sum_{r=-\infty}^{\infty} 2\pi\delta(\omega - \omega_0 + 2\pi r) \right] e^{j\omega n} d\omega \\ &= \int_{-\pi}^{\pi} \left[\sum_{r=-\infty}^{\infty} \delta(\omega - \omega_0 + 2\pi r) \right] e^{j\omega n} d\omega \end{aligned}$$

Since the above integrand involves impulses spaced by 2π , there is exactly one impulse over $-\pi < \omega < \pi$ which is the range of the integral. This impulse function is located at $\omega = \omega_0 - 2\pi r$ for some integer r . The value of the integral is therefore

$$e^{j(\omega_0 - 2\pi r)n} = e^{j\omega_0 n} = \text{complex exponential signal}$$

Another example: $\cos(\omega_0 n + \phi)$

$$\cos(\omega_0 n + \phi) = \frac{e^{j(\omega_0 n + \phi)} + e^{-j(\omega_0 n + \phi)}}{2} = \frac{e^{j\phi} e^{j\omega_0 n}}{2} + \frac{e^{-j\phi} e^{-j\omega_0 n}}{2}$$

Applying above results, we can obtain $X(e^{j\omega})$ for $x(n) = \cos(\omega_0 n + \phi)$ as

$$\begin{aligned} X(e^{j\omega}) &= \frac{e^{j\phi}}{2} \sum_{r=-\infty}^{\infty} 2\pi\delta(\omega - \omega_0 + 2\pi r) + \frac{e^{-j\phi}}{2} \sum_{r=-\infty}^{\infty} 2\pi\delta(\omega + \omega_0 + 2\pi r) \\ &= \sum_{r=-\infty}^{\infty} [\pi e^{j\phi}\delta(\omega - \omega_0 + 2\pi r) + \pi e^{-j\phi}\delta(\omega + \omega_0 + 2\pi r)] \end{aligned}$$

Table 2.3 below shows more Fourier Transform pairs)

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform
1. $\delta[n]$	1
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega + 2\pi k)$
4. $a^n u[n] \quad (a < 1)$	$\frac{1}{1 - ae^{-j\omega}}$
5. $u[n]$	$\frac{1}{1 - e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi\delta(\omega + 2\pi k)$
6. $(n + 1)a^n u[n] \quad (a < 1)$	$\frac{1}{(1 - ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p (n + 1)}{\sin \omega_p} u[n] \quad (r < 1)$	$\frac{1}{1 - 2r \cos \omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c, \\ 0, & \omega_c < \omega \leq \pi \end{cases}$
9. $x[n] = \begin{cases} 1, & 0 \leq n \leq M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M + 1)/2]}{\sin(\omega/2)} e^{-j\omega M/2}$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega - \omega_0 + 2\pi k)$
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} [\pi e^{j\phi}\delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi}\delta(\omega + \omega_0 + 2\pi k)]$

TABLE 2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

Sequence $x[n]$	Fourier Transform $X(e^{j\omega})$
1. $x^*[n]$	$X^*(e^{-j\omega})$
2. $x^*[-n]$	$X^*(e^{j\omega})$
3. $\mathcal{R}e\{x[n]\}$	$X_e(e^{j\omega})$ (conjugate-symmetric part of $X(e^{j\omega})$)
4. $j\mathcal{J}m\{x[n]\}$	$X_o(e^{j\omega})$ (conjugate-antisymmetric part of $X(e^{j\omega})$)
5. $x_e[n]$ (conjugate-symmetric part of $x[n]$)	$X_R(e^{j\omega}) = \mathcal{R}e\{X(e^{j\omega})\}$
6. $x_o[n]$ (conjugate-antisymmetric part of $x[n]$)	$jX_I(e^{j\omega}) = j\mathcal{J}m\{X(e^{j\omega})\}$
<i>The following properties apply only when $x[n]$ is real:</i>	
7. Any real $x[n]$	$X(e^{j\omega}) = X^*(e^{-j\omega})$ (Fourier transform is conjugate symmetric)
8. Any real $x[n]$	$X_R(e^{j\omega}) = X_R(e^{-j\omega})$ (real part is even)
9. Any real $x[n]$	$X_I(e^{j\omega}) = -X_I(e^{-j\omega})$ (imaginary part is odd)
10. Any real $x[n]$	$ X(e^{j\omega}) = X(e^{-j\omega}) $ (magnitude is even)
11. Any real $x[n]$	$\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$ (phase is odd)
12. $x_e[n]$ (even part of $x[n]$)	$X_R(e^{j\omega})$
13. $x_o[n]$ (odd part of $x[n]$)	$jX_I(e^{j\omega})$

Conjugate symmetric part of $x(n)$:

$$x_e(n) = \frac{x(n) + x^*(-n)}{2} = x_e^*(-n)$$

Conjugate anti-symmetric part of $x(n)$:

$$x_o(n) = \frac{x(n) - x^*(-n)}{2} = -x_o^*(-n)$$

For the special when $x(n)$ is real:

$$x_e(n) = \frac{x(n) + x(-n)}{2} \quad = \text{even part of } x(n)$$

$$x_o(n) = \frac{x(n) - x(-n)}{2} \quad = \text{odd part of } x(n)$$

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Sequence	Fourier Transform
$x[n]$	$X(e^{j\omega})$
$y[n]$	$Y(e^{j\omega})$
1. $ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$
2. $x[n - n_d]$ (n_d an integer)	$e^{-j\omega n_d} X(e^{j\omega})$
3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega - \omega_0)})$
4. $x[-n]$	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.
5. $nx[n]$	$j \frac{dX(e^{j\omega})}{d\omega}$
6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$
7. $x[n]y[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta})Y(e^{j(\omega - \theta)})d\theta$
Parseval's theorem:	
8. $\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	
9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$	

Section 4.4 - Discrete-Time Processing of Continuous-Time Signals

Consider the system structure shown in Figure 4.11 on p. 153:

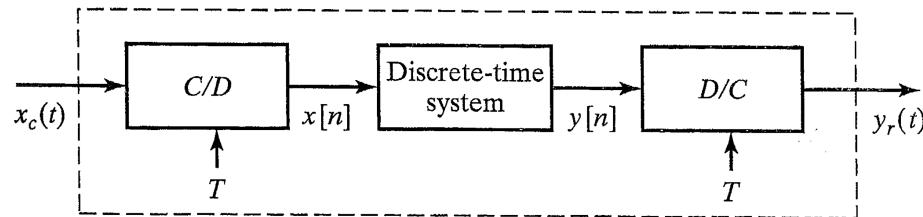


Figure 4.10 Discrete-time processing of continuous-time signals.

An example based on this structure:

Example 4.4 - Discrete-Time Implementation of an Ideal Continuous-Time Bandlimited Differentiator

Assume that we want the overall effect of the above system to be an ideal differentiator of the analog input, i.e., we want

$$y_r(t) = \frac{d}{dt} [x_c(t)]$$

In the s-domain this corresponds to the system operation $Y_r(s) = sX_c(s)$, which can be expressed in the analog frequency domain as

$$H_c(j\Omega) = j\Omega$$

To obtain a discrete time implementation, consider a band-limited version of the above. (Assume that the input is bandlimited and that it is sampled at a rate that exceeds the Nyquist rate.)

$$H_{ef}(j\omega) = j\omega \quad \text{for} \quad |\omega| < \frac{\pi}{T}$$

and

$$H_{ef}(j\omega) = 0 \quad \text{for} \quad |\omega| \geq \frac{\pi}{T}$$

The corresponding digital filter can be obtained by setting

$$H(e^{j\omega}) = \frac{j\omega}{T} \quad \text{for} \quad |\omega| < \pi$$

(As with all digital filters, $X(e^{j\omega})$ will be periodic in ω with period $= 2\pi$.)

The unit sample response corresponding to $H(e^{j\omega})$ can be found using:

$$\begin{aligned} h(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{j\omega}{T} e^{j\omega n} d\omega \quad (****) \end{aligned}$$

This integral can be evaluated using “integration by parts”:

Let $u = \omega$, then $du = d\omega$

and let $v = e^{j\omega n}$, so that $dv = jne^{j\omega n} d\omega$

Therefore, the right side of Equation (*****) can be written as

$$\frac{1}{2\pi n T} \int_{-\pi}^{\pi} u dv \quad (*****)$$

Using integration by parts to perform the integral:

$$\begin{aligned} \int_{-\pi}^{\pi} u dv &= uv \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} v du \\ &= \omega e^{j\omega n} \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} e^{j\omega n} d\omega \\ &= \pi e^{j\pi n} - (-\pi e^{-j\pi n}) - \frac{e^{j\pi n}}{jn} \Big|_{-\pi}^{\pi}, \quad n \neq 0 \\ &= \pi [e^{j\pi n} + e^{-j\pi n}] - \left[\frac{e^{j\pi n} - e^{-j\pi n}}{jn} \right], \quad n \neq 0 \\ &= 2\pi \cos(\pi n) - \left[\frac{2}{n} \right] \sin(\pi n), \quad n \neq 0 \end{aligned}$$

Therefore, Equation (*****) becomes

$$\begin{aligned} h(n) &= \frac{1}{2\pi n T} \left[2\pi \cos(\pi n) - \left[\frac{2}{n} \right] \sin(\pi n) \right], \quad n \neq 0 \\ &= \frac{1}{\pi n^2 T} [\pi n \cos(\pi n) - \sin(\pi n)], \quad n \neq 0 \end{aligned}$$

Since $\sin(\pi n) = 0$ for all n , the contribution of this term to $h(n)$ is 0 except for the $n = 0$ case, for which the numerator and denominator are both = 0). Therefore, the overall expression for $h(n)$ becomes:

$$h(n) = \frac{1}{nT} [\cos(\pi n)] \quad \text{for } n \neq 0 \quad \text{(equation 4.47 in text)}$$

and

$$h(n) = 0 \text{ for } n = 0 \quad \text{(since the integral of equation (****) = 0 for the } n = 0 \text{ case)}$$

Example: Illustration of Example 4.4 with a Sinusoidal Input

Consider the analog input to the above digitally-implemented bandlimited differentiator to be

$$x_c(t) = \cos(\Omega_0 t) \quad \text{with } \Omega_0 < \pi/T \quad \text{(i.e., the sampling rate is adequate)}$$

The output of the ideal C/D converter will then be:

$$x(n) = \cos(\omega_0 n) \quad \text{where } \omega_0 = \Omega_0 T < \pi.$$

As already shown, the DTFT of $x(n) = \cos(\omega_0 n)$ can be expressed as

$$X(e^{j\omega}) = \sum_{r=-\infty}^{\infty} [\pi\delta(\omega - \omega_0 + 2\pi r) + \pi\delta(\omega + \omega_0 + 2\pi r)]$$

For $|\omega| < \pi$ (the frequency range that will be involved in determining $y(n)$), this can be expressed as

$$X(e^{j\omega}) = \pi\delta(\omega - \omega_0) + \pi\delta(\omega + \omega_0) \quad |\omega| < \pi$$

The output of the discrete-time part ("middle part") of the overall system of Figure 4.11 is therefore

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

$$\begin{aligned} Y(e^{j\omega}) &= \frac{j\omega}{T} \left[\pi\delta(\omega - \omega_o) + \pi\delta(\omega + \omega_o) \right] \\ &= \frac{j\omega_o \pi}{T} \left[\delta(\omega - \omega_o) \right] - \frac{j\omega_o \pi}{T} \left[\delta(\omega + \omega_o) \right] \quad \text{for } |\omega| < \pi \end{aligned}$$

If $y(n)$ is the input to an ideal D/C converter, the overall analog output is then

$$\begin{aligned} Y_r(j\Omega) &= T Y(e^{j\omega}) \Big|_{\omega=\Omega T} = T Y(e^{j\Omega T}), \quad |\Omega| < \frac{\pi}{T} \\ &= T \left[\frac{j\omega_o \pi}{T} \left[\delta(\Omega T - \omega_o T) \right] - \frac{j\omega_o \pi}{T} \left[\delta(\Omega T + \omega_o T) \right] \right] \\ &= T \left[\frac{j\omega_o \pi}{T} \frac{1}{T} \left[\delta(\Omega - \omega_o) \right] - \frac{j\omega_o \pi}{T} \frac{1}{T} \left[\delta(\Omega + \omega_o) \right] \right] \\ &= j\pi\omega_o \delta(\Omega - \omega_o) - j\pi\omega_o \delta(\Omega + \omega_o) \end{aligned}$$

Since the inverse Fourier Transform of $\delta(\Omega - \omega_o)$ is $\frac{1}{2\pi} e^{j\omega_o t}$,

the time-domain counterpart of $Y_r(j\Omega)$ is

$$y_r(t) = j\omega_o \frac{1}{2} e^{j\omega_o t} - j\omega_o \frac{1}{2} e^{-j\omega_o t} = j\omega_o \frac{(e^{j\omega_o t} - e^{-j\omega_o t})}{2}$$

$= -\Omega_0 \sin(\Omega_0 t)$ which is indeed the derivative of the analog input, $x_c(t)$.

13

Section 4.5 Continuous-Time Processing of Discrete-Time Systems.

The following system configuration represents continuous-time processing of discrete-time signals:

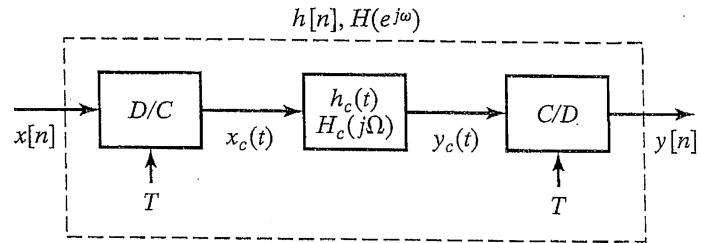


Figure 4.15 Continuous-time processing of discrete-time signals.

(This is complementary to the system considered earlier: Discrete-Time Processing of Continuous-Time Systems)

Note: This approach is not typically used to implement discrete-time systems, but it provides a framework for interpreting certain discrete-time systems.

The ideal D/C converter can be represented by a system that includes an analog impulse generator followed by an ideal low pass filter with cutoff frequency of π/T and a gain of T . (See Fig. 4.7, p. 164). Therefore, $X_c(j\Omega) = 0$ for $|\Omega| \geq \pi/T$. Furthermore, the "reconstruction formula" associated with the Sampling Theorem can be used to relate $x_c(t)$ with $x(n)$, as follows:

$$x_c(t) = \sum_{n=-\infty}^{\infty} x(n) \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

14

The frequency-domain operations associated with the process represented in Figure 4.15 are as follows:

$$X_c(j\Omega) = T X(e^{j\Omega T}) \quad |\Omega| < \pi/T$$

$$Y_c(j\Omega) = H_c(j\Omega) X_c(j\Omega) \quad |\Omega| < \pi/T$$

$$Y(e^{j\omega}) = \frac{1}{T} Y_c\left(\frac{j\omega}{T}\right), \quad |\omega| < \pi$$

Combining the above three relations and using the fact that $\omega = \Omega/T$,

$$\begin{aligned} Y(e^{j\omega}) &= \frac{1}{T} \left[H_c\left(\frac{j\omega}{T}\right) X_c\left(\frac{j\omega}{T}\right) \right] \\ &= \frac{1}{T} \left[H_c\left(\frac{j\omega}{T}\right) T X(e^{j\frac{\omega T}{T}}) \right] \\ &= H_c\left(\frac{j\omega}{T}\right) X(e^{j\omega}), \quad |\omega| < \pi \end{aligned}$$

Therefore, we can write

$$Y(e^{j\omega}) = X(e^{j\omega}) H(e^{j\omega})$$

where

$$H(e^{j\omega}) = H_c\left(j\frac{\omega}{T}\right) \quad |\omega| < \pi$$

Now consider an example which makes use of the above system structure:

Example 4.7 Noninteger Delay (essentially an interpolation between samples of a discrete time signal)

Consider the analog part (the middle part) of the system of Figure 4.15 to be

$$H_c(j\Omega) = e^{-j\Omega\Delta T}$$

Then $y_c(t) = x_c(t - \Delta T)$

where Δ is not necessarily an integer.

The overall output $y(n)$ corresponds to sampled values of $y_c(t)$ at $t = \text{integer multiples of } T$. That is,

$$y(n) = y_c(nT) = x_c(nT - \Delta T)$$

In the frequency domain,

$$\begin{aligned} H(e^{j\omega}) &= H_c(j\Omega) \Big|_{\Omega = \frac{\omega}{T}} \quad |\omega| \leq \pi \\ &= e^{-j\Omega\Delta T} \Big|_{\Omega = \frac{\omega}{T}} \quad |\omega| \leq \pi \quad \text{which can be written as } H(e^{j\omega}) = e^{-j\omega\Delta}, \quad |\omega| \leq \pi \end{aligned}$$

Figure 4.16 relates $y(n)$ to $x_c(t)$ for the case of $\Delta = 1/2$:

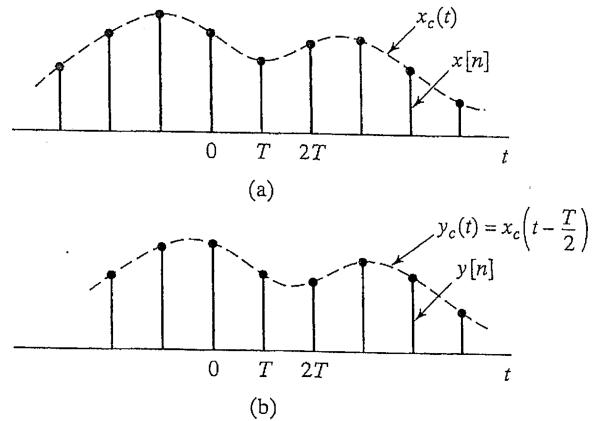


Figure 4.16 Continuous-time processing of the discrete-time sequence in part (a) can produce a new sequence with a "half-sample" delay, as in part (b).

Another time-domain interpretation of the above. Combining

$$y(n) = x_c(nT - \Delta T) = x_c(t - \Delta T) \Big|_{t=nT}$$

and

$$x_c(t) = \sum_{n=-\infty}^{\infty} x(n) \frac{\sin[\pi(t - nT)]}{\pi(t - nT) / T}$$

and changing the summation index from n to k gives:

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) \frac{\sin[\pi(t - \Delta T - kT) / T]}{\pi(t - \Delta T - kT) / T} \Big|_{t=nT}$$

$$= \sum_{k=-\infty}^{\infty} x(k) \frac{\sin[\pi(n-k-\Delta)]}{\pi(n-k-\Delta)} \quad (\text{assuming that } \Delta \text{ is not an integer})$$

This represents a convolution of $x(k)$ with

$$h(n) = \frac{\sin[\pi(n-\Delta)]}{\pi(n-\Delta)}, \text{ all } n \text{ (where again } \Delta \text{ is not an integer)}$$

Note that the above $h(n)$ represents an IIR filter. If Δ is an integer n_0 , then

$$y(n) = x_c(nT - n_0 T) = x_c((n - n_0)T)$$

which corresponds to

$$h(n) = \delta(n - n_0)$$

Example 4.8

Consider a discrete-time system whose output is the $(M+1)$ -point moving average of its input. That is,

$$y(n) = \frac{1}{M+1} \sum_{k=0}^M x(n-k)$$

The corresponding unit sample response is

$$h(n) = \frac{1}{M+1} \sum_{k=0}^M \delta(n-k)$$

The frequency response of this system is

$$\begin{aligned} H(e^{j\omega}) &= \sum_k h(k) e^{-j\omega k} \\ &= \frac{1}{(M+1)} \frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)} e^{-j\omega M/2} \quad |\omega| < \pi \end{aligned}$$

This can be represented as the cascade of two systems

$H_1(e^{j\omega})$ and $H_2(e^{j\omega})$ where

$$H_1(e^{j\omega}) = \frac{1}{(M+1)} \frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)} \quad \text{and} \quad H_2(e^{j\omega}) = e^{-j\omega M/2}$$

The overall system is shown below in Figure 4.17:

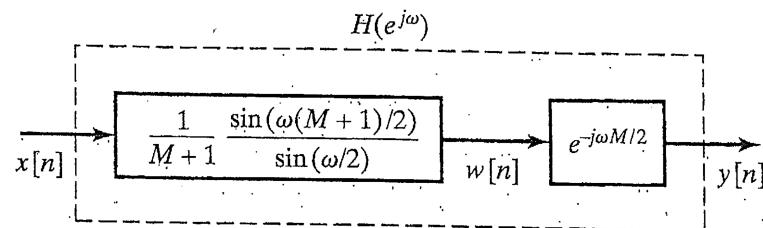


Figure 4.17 The moving-average system represented as a cascade of two systems.

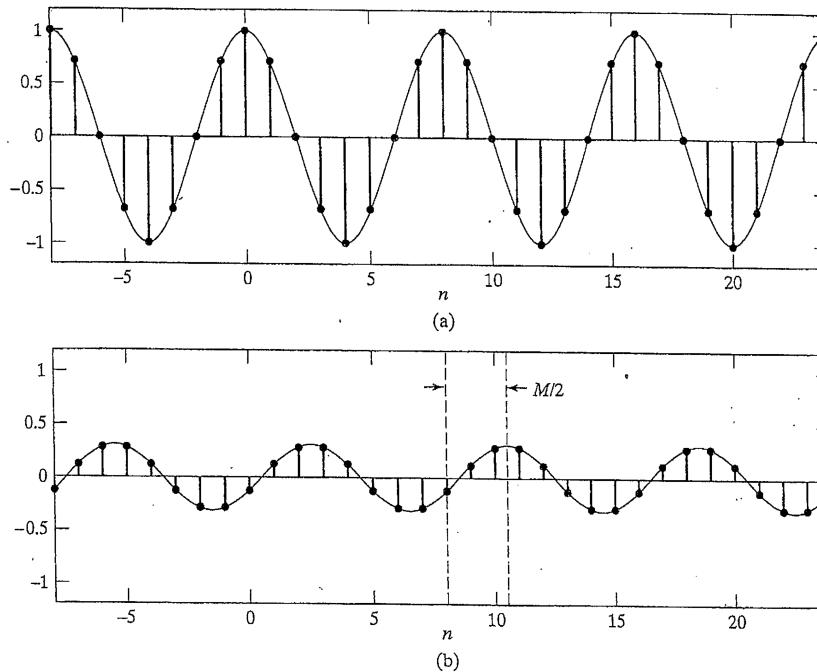
The magnitude response of the filter depends entirely upon $H_1(e^{j\omega})$.

$H_2(e^{j\omega})$ in a linear phase term that represents a pure time delay.

If M is an even integer, then the delay corresponds to an integer no. of samples ($M/2$ samples).

If M is an odd integer, then the delay of $M/2$ corresponds to delay of an "integer plus one-half".

This is shown in Figure 4.18 below, for the case of $M=5$ (a 6-point moving average) when the input is $x(n) = \cos(0.25\pi n)$.



4.18 Illustration of moving-average filtering. (a) Input signal $x[n] = \cos(0.25\pi n)$.
 (b) Corresponding output of six-point moving-average filter.

The time-domain expression for the output can be obtained by first writing the input as

$$\cos(0.25\pi n) = \frac{e^{j0.25\pi n} + e^{-j0.25\pi n}}{2}$$

and then

$$y(n) = H(e^{j0.25\pi n}) \frac{1}{2} e^{j0.25\pi n} + H(e^{-j0.25\pi n}) \frac{1}{2} e^{-j0.25\pi n}$$

For $M = 5$, this resolves to

20

$$\begin{aligned} y(n) &= \frac{1}{2} \frac{\sin[3(.25\pi)]}{6 \sin(.125\pi)} e^{-j(.25\pi)5/2} e^{j.25\pi n} + \frac{1}{2} \frac{\sin[3(-.25\pi)]}{6 \sin(-.125\pi)} e^{j(.25\pi)5/2} e^{-j.25\pi n} \\ &= .1540 e^{j.25\pi(n-2.5)} + .1540 e^{-j.25\pi(n-2.5)} \\ &= .308 \cos[.25\pi(n - 2.5)] \quad (\text{Note the delay by a non-integer no. of samples.}) \end{aligned}$$