ECE 844 - Unit 2
Changing the Sampling Rate Using Discrete-Time Processing (See Sect. 4.6 in text)
Assume that we have a discrete-time signal x(n) which was obtained by sampling an continuous-
time signal x (t) with time spacing T between samples. That is,
x(n)=x.(nT)
We now desire to obtain a new discrete-time signal, x'(n) which is defined as
x'(n)=x.(nT") ,where T'#T

Approach A:
1. Reconstruct x (t) from x(n) using ideal D/C conversion:

. sin[~ (t - nT)]
x ()= Y x(n)
%(t —nT)

Resample x, (t) at the desired sampling interval T' to obtain x (n)= xc(i’tT')

or (usually preferred):

Approach B:

-Approach B1: Use a "sampling rate compressor" to reduce the sampling rate.
or

- Approach B2: Use a "sampling rate expander" to increase the sampling rate.




Reducing the Sampling Rate by an Integer Factor (Sampling Rate Compression)

Let X, (1) = x(nM ) \where Mis a positive integer.
A sampling rate compressor which implements this re-sampling is shown in Figure 4.20:

' #M Figure 4.19 Representation of a
x[n] x4[n] = x[nM] Compressor or discrete-time samlper.
Sampling Sampling
period T period T'= MT
If x(n) was obtained by sampling x(t) at a sampling rate of — |

then x(nM) Xg (”) corresponds to re-sampling x (t) at a reduced sampling rate of y7°
Note that if the original sampling rate was at least M times the Nyquist rate, then the Sampling
Theorem will still be satisfied after "downsampling" by a factor of M.

Frequency domain view-point:
From development of the Sampling Theorem, we know that if x(n) is obtained by sampling x(t)

at a rate of 1/T, then the relation between X(e®) and X,(jQ) is

where 0 = QT (equation 4.71)

. 1 &
X(eP)=— 3 X ,
( )TECJT

K=—o

5%




Similarly, the relation for X (e*) can be obtained by replacing T with Tq= MT in the above (and
also changing the summation index to r):

i 1 < [ o 27mr _
Xd(e‘)=ﬁ XCHW—WH (equation 4.73)

r=—co

In order to obtain the relation between X (e*) and X(e*), we now express the summation index
in the previous equation as

r=i+kM
and perform a double summation with i ranging from 0 to M-1 and with k ranging from
—oo to oo, Note that the resulting value of r will also range from —oo to .

Table of values of r

1 value (k=0) (k=1) (k=2) (k=3) (etc)

0 0 M 2M 3M etc
1 1 M+1 2M+1 3M+1 etc
2 2 M+2 2M+2 3M+2 etc
etc

M-1 M-1 2M-1 3M-1 4M-1 etc

Therefore, the expression for X (e*) becomes

R [y Qe [ o 2nk 2ni .
X, (e )WZ{?EX{J[W‘ T _MTH} (equation 4.75)

i=0

_ &sz{% i X l:j((w - 2mi) an]]} _ %Ex(ej(m-zﬁ)/M) (equation 4.787
i=0

io | Tk— MT T



4
Note that X,(e*) consists of M copies of a frequency scaled (expanded) version of the original X(e'®)

positioned atw =0, w=2r, w=4rx,..., w=(M-1)2n. (The frequency scale factor used is M.)

Figure 4.20 shows X,(e*) for the case of M=2. (No aliasing occurs in this case since @max for X(e®)
ism/2.) Note: w, . is defined as the largest value of @ (for @ <7 ) for which x(e*) is non-zero.
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Figure 4.20 Frequency-domain illustration
0= of down-sampling.




Figure 4.21 shows X (e*) for the
case of M=3. This time there is
aliasing present in X (e*).

In this case, aliasing can be avoided,
if we are willing to low-pass filter
the signal prior to down-sampling,
as shown in the figure.

f
Figure 4.21 (a)-(c) Downsampling with aliasing. (d)-(f) Downsampling with()

Prefiltering to avoid aliasing.
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Increasing the Sampling Rate by an Integer Factor (See Section 4.6.2 in text)

Assume that x(n) was obtained by sampling a continuous signal x,(t) at a rate of % That is,
x(n)=x,(nT)

Now we want to obtain new discrete-tﬁme signal x'(n) which corresponds to samples of x(t)

taken at a higher sampling rate of L(;, where Lis an integer.

Consider the following approach to obtain x'(n):

First, insert L-1 0's between each of the original samples to increase the total number of samples
by a factor of L. Call this signal x,(n). This signal can be expressed in terms of the original signal
X(n) using

x_(n)=x(n/L), for nan integer multiple of L, and

x,(n)=0 , forall other values of n.
Equivalently, we could write

oo

x (n) = Y x(k)d(n - kL) = x(0)8(n) + x(1)d(n — L) + x(2)8(n - 2L) + - --

K=—o0
The frequency domain representation of x.(n) can be found from

X (e®)=3 [ 3 x(K)8(n - kL)je‘j"’"

N=—c

K=—co

k=—co N=—co

-y x(k)[ 3 8(n- kL))ej‘”"

= 3 x(k)e ™ = X(e™) (equation 4.85)

k=—c



This insertion of zeros as “position holders” between samples of the original signal

is represented as:

e — fL > This system is called a “sampling rate expander.”

x[n] x[n]

In the frequency domain, the above operation corresponds to frequency scaling (by a
compression factor of L), of the original X(e*).
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Figure 4.24 Frequency domain illustration of interpolation
(parts d and e on next slide)



From a frequency domain perspective, an ideal lowpass filter with cutoff of /L
and gain L can now be used to obtain a frequency domain function equivalent to the

DTFT of a discrete-time signal consisting of samples of x (t) sampled at a rate L times
faster than the rate used to sample x(n).

X.3j0) Hy(e")

(b) ’ —2m

| Xo(eh) = X(eFob)

Figure 4.24 Frequency domain illustration of interpolation
7 (parts a-c repeated from previous slide.)



The complete 2-step process for increasing the sampling rate by an an
integer factor of L is shown below:

Lowpass filter
S— ‘L el Gain = L e
x{n] xn] | Cutoff=#/L | xn]
Sampling Sampling Sampling
period T period 7" = 771 period 7' = T/L

Figure 4.23 General system for sampling rate increase by L.

The overall system, consisting of a sampling rate expander and a lowpass filter,
is call an “interpolator.”



The operation of passing x.(n) though an ideal low-pass filter with cutoff frequency of /L and 10

gain of L corresponds to convolving x.(n) with a digital filter whose h(n) is given by

sin(E n)
h(n)=L

forn=0, _ -
- # and h(n)=1 forn=0.

The output of this convolution can be expressed as

=)

x (=3 x_(kh(n-k)

K=—oco

=i(ixmakqu%m—m

K=—oo

je=—oo

= Y x(§) Y, 8(k - jLh(n—k)

j=—oo k=—cc

= 3 x(h(n- jL)

j=—oo

(now change summation index from j to k)

oo

x () = 3 x(k)h (n—kL)

} sin(f(n - kL)j
= 2 xoL—

] sin(:(n . kL)J
= >, x(k)
ke (:](n —kL)

(One term in the summation would blow up for
some value of k.)

, n #integer.L

n#integer L (equation 4.88)



When n = pL,

)

x(m) =Y x(kh(pL - kL)

k:—oo

= Y x(h[L(p - k)]

k=—co
Note that h[L(p—-k)]=1when p =k

and

. T
Sln[L L(p - k)j ) sin(n(p ~ k))
TL(p-k) P -k)
L

=0

hlL(p-k)]=

Therefore, (still for the case where n = pL):

oo

x,(n) = > x(k)h,(pL —kL) = x(p)

k:—oo

= X[EJ =X (nT) where T = T
L Cc [ [ L

when p # k

11



Interesting side note: Linear Interpolation can also be represented by a convolution. 12

Example: Note that linear interpolation can be used to find x(1), x(2), x(3), and x(4), using known

values of x(0) and x(5), as follows:

x(1) = x(0) + .2[x(5) - x(0)] =.8x(0) + .2x(5)
X(2) = x(0) + .4[x(5) - x(0)] =.6x(0) + .4x(5)
X(3) = x(0) + .6[x(5) - x(0)] =.4x(0) + .6x(5)
x(4) = x(0) + .8[x(5) - x(0)] =.2x(0) + .8x(5)

Note this interpolation could be implemented by a convolution with x.(n) and the h(n) shown

below:
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Figure 4.25 Impulse responses for
linear interpolation.
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Figure 4.26 (a) lilustration of linear interpolation by filtering. (b) Frequency re-
sponse of linear interpolator compared with ideal lowpass interpolation filter.



13

In general, the h(n) that can be used to perform linear interpolation between x(n) values that
are spaced byn=>Lis
h,(n)=1-|n]/L, for |n| <L
=0, for all other n.

A frequency domain view-point of the linear interpolator is shown below in figure 4.26 (b). The
frequency domain version of the ideal interpolator, Hi(ej“’) , is also shown to permit comparison.
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Figure 4.26 (a) lilustration of linear interpolation by filtering. (b) Frequency re-
sponse of linear interpolator compared with ideal lowpass interpolation filter.



Changing the sampling rate by a non-integer factor (See Section 4.6.4)

Now it is desired to change the sampling period T to T% , Where M and L are integers. This is the

same as changing the sampling rate to
combining two steps:

1. Upsample by a factor of L.
2. Downsample by a factor of M .

(lj(ij . This changein T and L can be accomplished by
T )\ M T

Interpolator Decimator

r—-————"—"—"—"7T 7777777 1 1
| L |

! |
| Lowpass filter | | 1| Lowpass filter |
> AL > Gain=L | > Gain=1 = {M ——>

x[n] | x[n] | Cutoff=w/L | | x[n] | | Cutoff=m/M | %[n] | Xaln]
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Figure 4.29 (a) System for changing the sampling rate by a noninteger factor. (b)
Simplified system in which the decimation and interpolation filters are combined.



Example: L=2and M =3
e sampling period increased from T to%T :

1 21
e sampling rate decreased from 7 to 37

Figure 4.30 lllustration of changing

The smapling rate by a noninteger factor

XG0

(@

®

2 4mr 0=QT/L

L\
t~
[E]
el
h
|

U}

[ o]

3

(M=3)

T 2 w=0T/L

27 —ﬂ' T ' 2ar w=QTM/L
®

15



