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  2	
  
Changing	
  the	
  Sampling	
  Rate	
  	
  Using	
  Discrete-­‐Time	
  Processing	
  (See	
  Sect.	
  4.6	
  in	
  text)	
  
Assume	
  that	
  we	
  have	
  	
  a	
  discrete-­‐1me	
  signal	
  x(n)	
  which	
  was	
  obtained	
  by	
  sampling	
  an	
  con1nuous-­‐
1me	
  signal	
  xc(t)	
  with	
  1me	
  spacing	
  T	
  between	
  samples.	
  	
  That	
  is,	
  
	
  
We	
  now	
  desire	
  to	
  obtain	
  a	
  new	
  discrete-­‐1me	
  signal,	
  x'(n)	
  which	
  is	
  defined	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  where	
  	
  	
  	
  	
  
	
  
Approach	
  A:	
  	
  	
  
1.  Reconstruct	
  xc(t)	
  from	
  x(n)	
  using	
  	
  ideal	
  D/C	
  conversion:	
  

Resample	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  at	
  the	
  desired	
  sampling	
  interval	
  T'	
  to	
  obtain	
  	
  
or	
  (usually	
  preferred):	
  
Approach	
  B:	
  	
  	
  
-­‐Approach	
  B1:	
  	
  	
  Use	
  a	
  "sampling	
  rate	
  compressor"	
  to	
  reduce	
  the	
  sampling	
  rate.	
  
or	
  	
  
-­‐	
  Approach	
  B2:	
  	
  Use	
  a	
  "sampling	
  rate	
  expander"	
  to	
  increase	
  the	
  sampling	
  rate.	
  
	
  

	
  
	
  

x n( ) = xc nT( )

x ' n( ) = xc nT '( ) T ' ≠ T

  

xr(t) = x(n)
sin[π

T
(t − nT)]

π
T

(t − nT)n=−∞

∞

∑

xr t( ) x ' n( ) = xc nT '( )
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Reducing	
  the	
  Sampling	
  Rate	
  by	
  an	
  Integer	
  Factor	
  (Sampling	
  Rate	
  Compression)	
  
Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  M	
  is	
  a	
  posi1ve	
  integer.	
  
A	
  sampling	
  rate	
  compressor	
  which	
  implements	
  this	
  re-­‐sampling	
  is	
  shown	
  in	
  Figure	
  4.20:	
  
	
  
	
  
	
  
	
  
	
  
If	
  x(n)	
  was	
  obtained	
  by	
  sampling	
  xc(t)	
  at	
  a	
  sampling	
  rate	
  of	
  	
  	
  	
  	
  	
  	
  ,	
  
then	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  corresponds	
  to	
  re-­‐sampling	
  xc(t)	
  at	
  a	
  reduced	
  sampling	
  rate	
  of	
  	
  	
  	
  	
  	
  	
  
Note	
  that	
  if	
  the	
  original	
  sampling	
  rate	
  was	
  at	
  least	
  M	
  1mes	
  the	
  Nyquist	
  rate,	
  then	
  the	
  Sampling	
  
Theorem	
  will	
  s1ll	
  be	
  sa1sfied	
  aVer	
  "downsampling"	
  by	
  a	
  factor	
  of	
  M.	
  
	
  	
  
Frequency	
  domain	
  view-­‐point:	
  
From	
  development	
  of	
  the	
  Sampling	
  Theorem,	
  we	
  know	
  that	
  if	
  x(n)	
  is	
  obtained	
  by	
  sampling	
  xc(t)	
  
at	
  a	
  rate	
  of	
  1/T,	
  then	
  the	
  rela1on	
  between	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

xd n( ) = x nM( )

x nM( ) = xd n( )
1
T 1

MT
.

  X(ejω) Xc jΩ( )

X(ejω) = 1
T

Xc j ω

T
−

2πk
T

$

%
&&

'

(
))

*

+
,
,

-

.
/
/
,    where ω = ΩT

k=−∞

∞

∑ (equa1on	
  4.71) 	
  	
  	
  

Figure	
  4.19	
  Representa1on	
  of	
  a	
  	
  	
  
Compressor	
  or	
  discrete-­‐1me	
  samlper.	
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Similarly,	
  the	
  rela1on	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  obtained	
  by	
  replacing	
  T	
  with	
  Td	
  =	
  MT	
  in	
  the	
  above	
  (and	
  
also	
  changing	
  the	
  summa1on	
  index	
  to	
  r):	
  
	
  
	
  
In	
  order	
  to	
  obtain	
  the	
  rela1on	
  between	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  we	
  now	
  express	
  the	
  summa1on	
  index	
  
in	
  the	
  previous	
  equa1on	
  as	
  
r	
  =	
  i	
  +	
  kM	
  
and	
  perform	
  a	
  double	
  summa1on	
  with	
  i	
  ranging	
  from	
  0	
  to	
  M-­‐1	
  and	
  with	
  k	
  ranging	
  from	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  to	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  	
  	
  Note	
  that	
  the	
  resul1ng	
  value	
  of	
  r	
  will	
  also	
  range	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  	
  	
  	
  	
  	
  .	
  
	
  
Table	
  of	
  	
  values	
  of	
  r	
  
	
  
	
  
	
  
	
  
	
  
Therefore,	
  the	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  becomes	
  
	
  
	
  	
  
	
  
	
  

Xd(e
jω)

  
Xd(e

jjω) = 1
MT Xc j ω

MT − 2πr
MT

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥r=−∞

∞

∑ (equa1on	
  4.73)	
  

  X(ejω)  Xd(e
jω)

−∞ ∞ −∞ ∞

  Xd(e
jω)

  
Xd(e

jω) = 1
M

1
T Xc j ω

MT − 2πk
T − 2πi

MT
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥k=−∞

∞

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=0

M−1

∑ (equa1on	
  4.75)	
  

  
= 1

M
1
T Xc j (ω − 2πi)

MT − 2πk
T

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥k=−∞

∞

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=0

M−1

∑
 
= 1

M X(ej(ω−2πi)/M)
i=0

M−1
∑ (equa1on	
  4.787	
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Note	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  consists	
  of	
  M	
  copies	
  of	
  a	
  frequency	
  scaled	
  (expanded)	
  version	
  of	
  the	
  original	
  	
  	
  	
  	
  
posi1oned	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  .	
  .	
  .	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  (The	
  frequency	
  scale	
  factor	
  used	
  is	
  M.)	
  
Figure	
  4.20	
  shows	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  the	
  case	
  of	
  M=2.	
  	
  (No	
  aliasing	
  occurs	
  in	
  this	
  case	
  since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  
is	
  π/2.)	
  	
  Note:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  defined	
  as	
  the	
  largest	
  value	
  of	
  	
  	
  	
  	
  (for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  for	
  which	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  non-­‐zero.	
  	
  

  Xd(e
jω)   X(ejω)
ω = 0 ω = 2π ω = 4π ω = M −1( )2π

  Xd(e
jω) ωmax   X(ejω)

ωmax
ω ω < π   X(ejω)

Figure	
  4.20	
  Frequency-­‐domain	
  illustra1on	
  
	
  of	
  down-­‐sampling.	
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Figure	
  4.21	
  shows	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  the	
  
	
  case	
  of	
  M=3.	
  	
  This	
  1me	
  there	
  is	
  	
  
aliasing	
  present	
  in	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  
In	
  this	
  case,	
  aliasing	
  can	
  be	
  avoided,	
  	
  
if	
  we	
  are	
  willing	
  to	
  low-­‐pass	
  filter	
  	
  
the	
  signal	
  prior	
  to	
  down-­‐sampling,	
  	
  
as	
  shown	
  in	
  the	
  figure.	
  
	
  

  Xd(e
jω)

  Xd(e
jω)

Figure	
  4.21	
  (a)-­‐(c)	
  Downsampling	
  with	
  aliasing.	
  (d)-­‐(f)	
  Downsampling	
  with	
  
Prefiltering	
  to	
  avoid	
  aliasing.	
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Increasing	
  the	
  Sampling	
  Rate	
  by	
  an	
  Integer	
  Factor	
  (See	
  Sec1on	
  4.6.2	
  	
  in	
  text)	
  
Assume	
  that	
  x(n)	
  was	
  obtained	
  by	
  sampling	
  a	
  con1nuous	
  signal	
  xr(t)	
  at	
  a	
  rate	
  of	
  	
  	
  	
  .	
  	
  That	
  is,	
  
	
  
Now	
  we	
  want	
  to	
  obtain	
  new	
  discrete-­‐1me	
  signal	
  x'(n)	
  which	
  corresponds	
  to	
  samples	
  of	
  xc(t)	
  
taken	
  at	
  a	
  higher	
  sampling	
  rate	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  where	
  L	
  is	
  an	
  integer.	
  
Consider	
  the	
  following	
  approach	
  to	
  obtain	
  x'(n):	
  
First,	
  insert	
  L-­‐1	
  0's	
  between	
  each	
  of	
  the	
  original	
  samples	
  to	
  increase	
  the	
  total	
  number	
  of	
  samples	
  
by	
  a	
  factor	
  of	
  L.	
  	
  Call	
  this	
  signal	
  xe(n).	
  	
  This	
  signal	
  can	
  be	
  expressed	
  in	
  terms	
  of	
  the	
  original	
  signal	
  	
  
x(n)	
  using	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  for	
  n	
  an	
  integer	
  mul1ple	
  of	
  L	
  ,	
  and	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  for	
  all	
  other	
  values	
  of	
  n.	
  
Equivalently,	
  we	
  could	
  write	
  
	
  
	
  
The	
  frequency	
  domain	
  representa1on	
  of	
  xe(n)	
  can	
  be	
  found	
  from	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa1on	
  4.85)	
  
	
  
	
  
	
  

1
T

x n( ) = xc nT( )

  xe(n) = x(n / L)

  xe(n) = 0

  
xe(n) = x(k)δ(

k=−∞

∞

∑ n − kL) = x(0)δ(n) + x(1)δ(n − L) + x(2)δ(n − 2L) + ⋅ ⋅ ⋅

  
Xe(e

jω) = x(k)δ(n − kL)
k=−∞

∞

∑
⎛

⎝⎜
⎞

⎠⎟n=−∞

∞

∑ e− jωn

  
= x(k) δ(n − kL)

n=−∞

∞

∑
⎛

⎝⎜
⎞

⎠⎟k=−∞

∞

∑ e− jωn

  
= x(k)

k=−∞

∞

∑ e− jωkL = X(ejωL)

L 1
T

⎛
⎝⎜

⎞
⎠⎟
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This	
  inser1on	
  of	
  zeros	
  as	
  “posi1on	
  holders”	
  between	
  samples	
  of	
  the	
  original	
  signal	
  	
  
is	
  represented	
  as:	
  

In	
  the	
  frequency	
  domain,	
  the	
  above	
  opera1on	
  corresponds	
  to	
  frequency	
  scaling	
  (by	
  a	
  
compression	
  factor	
  of	
  L),	
  of	
  the	
  original	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
    X(ejω)

Figure	
  4.24	
  Frequency	
  domain	
  illustra1on	
  of	
  interpola1on	
  
(parts	
  d	
  and	
  e	
  on	
  next	
  slide)	
  

This	
  system	
  is	
  called	
  a	
  “sampling	
  rate	
  expander.”	
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From	
  a	
  frequency	
  domain	
  perspec1ve,	
  an	
  ideal	
  lowpass	
  filter	
  with	
  cutoff	
  of	
  π/L	
  	
  
and	
  gain	
  L	
  can	
  now	
  be	
  used	
  to	
  obtain	
  a	
  frequency	
  domain	
  func1on	
  equivalent	
  to	
  the	
  	
  	
  
DTFT	
  of	
  a	
  discrete-­‐1me	
  signal	
  consis1ng	
  of	
  samples	
  of	
  xc(t)	
  sampled	
  at	
  a	
  rate	
  L	
  1mes	
  
	
  faster	
  than	
  the	
  rate	
  used	
  to	
  sample	
  x(n).	
  

Figure	
  4.24	
  Frequency	
  domain	
  illustra1on	
  of	
  interpola1on	
  
(parts	
  a-­‐c	
  repeated	
  from	
  previous	
  slide.)	
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The	
  complete	
  2-­‐step	
  process	
  for	
  increasing	
  the	
  sampling	
  rate	
  by	
  an	
  an	
  
integer	
  factor	
  of	
  L	
  is	
  shown	
  below:	
  	
  

The	
  overall	
  system,	
  consis1ng	
  of	
  a	
  sampling	
  rate	
  expander	
  and	
  a	
  lowpass	
  filter,	
  	
  
is	
  call	
  an	
  “interpolator.”	
  

Figure	
  4.23	
  	
  General	
  system	
  for	
  sampling	
  rate	
  increase	
  by	
  L.	
  

9	
  



The	
  opera1on	
  of	
  passing	
  xe(n)	
  though	
  an	
  ideal	
  low-­‐pass	
  filter	
  with	
  cutoff	
  frequency	
  of	
  π/L	
  and	
  
gain	
  of	
  L	
  corresponds	
  to	
  convolving	
  xe(n)	
  with	
  a	
  digital	
  filter	
  whose	
  h(n)	
  is	
  given	
  by	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  
	
  
The	
  output	
  of	
  this	
  convolu1on	
  can	
  be	
  expressed	
  as	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
(now	
  change	
  summa1on	
  index	
  from	
  j	
  to	
  k)	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa1on	
  4.88)	
  
	
  

  
hi(n) = L

sin(π
L

n)

πn
 for n ≠ 0,

  hi(n) = 1  for n = 0.

  
xi(n) = xe(k)hi(n − k)

k=−∞

∞

∑

  
= x(j)δ(k − jL)

j=−∞

∞

∑
⎛

⎝⎜
⎞

⎠⎟k=−∞

∞

∑ hi(n − k)

  
= x(j) δ(k − jL)hi(n − k)

k=−∞

∞

∑
j=−∞

∞

∑

  
= x(j)hi(n − jL)

j=−∞

∞

∑

xi(n) = x(k)hi(n − kL)
k=−∞

∞

∑

   
= x(k) L

sin π
L

(n − kL)
⎛

⎝⎜
⎞

⎠⎟

π(n − kL)k=−∞

∞

∑ ,        n ≠ integer i L

   

= x(k)
sin π

L
(n − kL)

⎛

⎝⎜
⎞

⎠⎟

π
L

⎛

⎝⎜
⎞

⎠⎟
(n − kL)k=−∞

∞

∑        n ≠ integer i L

(One	
  term	
  in	
  the	
  summa1on	
  would	
  blow	
  up	
  for	
  
some	
  value	
  of	
  k.)	
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When	
  n	
  =	
  pL,	
  

= x(k)hi[L(p − k)
k=−∞

∞

∑ ]

Note	
  that	
  	
     hi[L(p − k)] = 1 when p = k

and	
  	
  

hi[L(p − k)] =
sin π

L L(p − k)⎛

⎝⎜
⎞

⎠⎟

π
L L(p − k)

=
sin π(p − k)( )

π(p − k)
= 0 when	
  p	
  ≠	
  k	
  

Therefore,	
  (s1ll	
  for	
  the	
  case	
  where	
  n	
  =	
  pL):	
  	
  

xi(n) = x(k)hi(pL − kL)
k=−∞

∞

∑ = x(p)

xi(n) = x(k)hi(pL − kL)
k=−∞

∞

∑

  
= x n

L
⎛

⎝⎜
⎞

⎠⎟
= xc(nTi) where	
   Ti =

T
L
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Interes1ng	
  side	
  note:	
  	
  Linear	
  Interpola1on	
  can	
  also	
  be	
  represented	
  by	
  a	
  convolu1on.	
  
Example:	
  	
  Note	
  that	
  linear	
  interpola1on	
  can	
  be	
  used	
  to	
  find	
  x(1),	
  x(2),	
  x(3),	
  and	
  x(4),	
  using	
  known	
  
values	
  of	
  x(0)	
  and	
  x(5),	
  as	
  follows:	
  
	
  	
  
x(1)	
  =	
  x(0)	
  +	
  .2[x(5)	
  -­‐	
  x(0)]	
  =.8x(0)	
  +	
  .2x(5)	
  
x(2)	
  =	
  x(0)	
  +	
  .4[x(5)	
  -­‐	
  x(0)]	
  =.6x(0)	
  +	
  .4x(5)	
  
x(3)	
  =	
  x(0)	
  +	
  .6[x(5)	
  -­‐	
  x(0)]	
  =.4x(0)	
  +	
  .6x(5)	
  
x(4)	
  =	
  x(0)	
  +	
  .8[x(5)	
  -­‐	
  x(0)]	
  =.2x(0)	
  +	
  .8x(5)	
  
	
  	
  
Note	
  this	
  interpola1on	
  could	
  be	
  implemented	
  by	
  a	
  convolu1on	
  with	
  xe(n)	
  and	
  the	
  h(n)	
  shown	
  
below:	
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In	
  general,	
  the	
  h(n)	
  that	
  can	
  be	
  used	
  to	
  perform	
  linear	
  interpola1on	
  between	
  x(n)	
  values	
  that	
  	
  	
  	
  
are	
  spaced	
  by	
  n	
  =	
  L	
  is	
  
	
  	
  	
  	
  	
  	
  	
  hlin(n	
  )	
  =	
  1	
  -­‐	
  |n|/L,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  	
  |n|	
  ≤	
  L	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  0,	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  all	
  other	
  n.	
  
	
  
A	
  frequency	
  domain	
  view-­‐point	
  of	
  the	
  linear	
  interpolator	
  is	
  shown	
  below	
  in	
  figure	
  4.26	
  (b).	
  	
  	
  The	
  
frequency	
  domain	
  version	
  of	
  the	
  ideal	
  interpolator,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  is	
  also	
  shown	
  to	
  permit	
  comparison.	
  
	
  
	
  
	
  
	
  
	
  
	
  

  
Hi(e

jω)
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Changing	
  the	
  sampling	
  rate	
  by	
  a	
  non-­‐integer	
  factor	
  	
  	
  (See	
  Sec1on	
  4.6.4)	
  
Now	
  it	
  is	
  desired	
  to	
  change	
  the	
  sampling	
  period	
  T	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  where	
  M	
  and	
  L	
  are	
  integers.	
  	
  This	
  is	
  the	
  
same	
  as	
  changing	
  the	
  sampling	
  rate	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  This	
  change	
  in	
  T	
  and	
  	
  	
  	
  	
  	
  can	
  be	
  accomplished	
  by	
  
combining	
  two	
  steps:	
  
1.	
  	
  Upsample	
  by	
  a	
  factor	
  of	
  L.	
  	
  
2.	
  	
  Downsample	
  by	
  a	
  factor	
  of	
  M	
  .	
  

T M
L1

T
⎛
⎝⎜

⎞
⎠⎟

L
M

⎛
⎝⎜

⎞
⎠⎟

1
T

Figure	
  4.29	
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Example:	
  	
  L	
  =	
  2	
  and	
  M	
  =	
  3	
  
•	
  sampling	
  period	
  increased	
  from	
  T	
  to	
  	
  	
  	
  	
  	
  	
  .	
  	
  
	
  
•	
  sampling	
  rate	
  decreased	
  from	
  	
  	
  	
  	
  to	
  	
  
	
  

3
2
T

1
T

2
3
1
T

Figure	
  4.30	
  Illustra1on	
  of	
  changing	
  
The	
  smapling	
  rate	
  by	
  a	
  noninteger	
  factor	
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