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Mul%rate	
  Signal	
  Processing	
  	
  (See	
  sec%on	
  4.7)	
  
The	
  frequency	
  response	
  of	
  a	
  stable	
  system	
  having	
  system	
  func%on	
  H(z)	
  is	
  	
  
	
  
Likewise,	
  the	
  frequency	
  response	
  of	
  the	
  system	
  having	
  system	
  func%on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  

	
  
Therefore,	
  in	
  the	
  system	
  shown	
  below,	
  	
  
	
  
	
  
	
  
	
  
	
  
In	
  the	
  same	
  diagram,	
  y(n)	
  is	
  a	
  downsampled	
  version	
  of	
  xb(n),	
  where	
  the	
  downsampling	
  ra%o	
  is	
  M.	
  	
  
Therefore,	
  in	
  the	
  frequency	
  domain	
  we	
  can	
  write:	
  
	
  
	
  
	
  
Note	
  that	
  	
  

  
H(ejω) = H(z)

z=ejω

  H1(z) = H(zM)

  
H1(z)
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z=ejω
= H(ejωM)

  Xb(e
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Therefore	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  expressed	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa%on	
  4.100)	
  
	
  
Because	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  periodic	
  with	
  period	
  =	
  2π,	
  the	
  above	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  wriQen	
  as	
  
	
  
	
  
If	
  we	
  define	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  	
  
	
  
Then	
  
	
  
	
  
Based	
  on	
  our	
  previous	
  developments,	
  we	
  know	
  that	
  the	
  xa(n)	
  is	
  a	
  down-­‐sampled	
  version	
  of	
  x(n),	
  
with	
  a	
  downsampling	
  ra%o	
  of	
  M.	
  	
  Therefore,	
  the	
  following	
  two	
  systems	
  are	
  equivalent:	
  
	
  
	
  
	
  
	
  
	
  

  
Y(ejω) = 1

M
X(e

j(ω−2πi)
M )H(ej(ω−2πi))

i=0

M−1

∑

  
Y(ejω) = H ejω( ) 1

M
X(e

j(ω−2πi)
M )

i=0

M−1

∑
  Y(ejω)

  Y(ejω)

  H(ejω)

  Xa(e
jω)

  
Xa(e

jω) = 1
M X(e

j(ω−2πi)
M )

i=0

M−1

∑

  Y(ejω) = H ejω( )Xa(e
jω)

Figure	
  4.31	
  	
  Two	
  equivalent	
  systems	
  based	
  on	
  downsampling	
  iden%%es.	
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  Y(ejω) = Xa(e
jωL)

  Xa(e
jω) = H(ejω)X(ejω)

  Y(ejω) = H(ejωL)X(ejωL)

  Xb(e
jω) = X(ejωL)

Therefore,	
  the	
  order	
  of	
  down-­‐sampling	
  and	
  filtering	
  in	
  the	
  first	
  figure	
  can	
  be	
  interchanged,	
  
if	
  the	
  filter	
  is	
  adjusted	
  accordingly,	
  e.g.,	
  the	
  filtering	
  step	
  is	
  H(zM)	
  in	
  the	
  second	
  figure	
  and	
  	
  
H(z)	
  in	
  the	
  first	
  figure.	
  
Likewise,	
  the	
  following	
  configura%ons,	
  which	
  involve	
  filtering	
  and	
  up-­‐sampling,	
  are	
  
equivalent:	
  

Show	
  this:	
  	
  	
  

From	
  the	
  first	
  of	
  the	
  above	
  figures,	
  	
  

We	
  also	
  see	
  that	
  	
  

Therefore,	
  we	
  can	
  write	
  

From	
  the	
  second	
  figure,	
  we	
  can	
  also	
  see	
  that	
  	
  

Figure	
  4.32	
  	
  Two	
  equivalent	
  systems	
  	
  
based	
  on	
  upsampling	
  iden%%es.	
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The	
  output	
  the	
  system	
  in	
  the	
  second	
  figure	
  is	
  therefore	
  
	
  
	
  
	
  
This	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  same	
  as	
  the	
  expression	
  for	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  produced	
  in	
  the	
  first	
  figure.	
  
Therefore,	
  the	
  opera%ons	
  of	
  linear	
  filtering	
  and	
  up-­‐sampling	
  in	
  the	
  first	
  figure	
  can	
  be	
  
interchanged	
  if	
  the	
  filter	
  is	
  appropriately	
  modified;	
  that	
  is,	
  if	
  H(z)	
  is	
  replaced	
  with	
  H(zL).	
  
	
  
Polyphase	
  Decomposi@on	
  	
   	
  (See	
  sec%on	
  4.7.3)	
  
Consider	
  decomposing	
  h(n)	
  into	
  the	
  sum	
  of	
  M	
  shiZed	
  subsequences	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa%on.	
  4.106)	
  	
  
	
  
where	
  for	
  k	
  =	
  0,	
  1,	
  ...,M-­‐1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  h(n	
  +	
  k),	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  n	
  =	
  integer	
  mul@ple	
  of	
  M	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa%on.	
  4.105)	
  	
  
hk(n)	
  	
  =	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0, 	
   	
  	
  	
  for	
  all	
  other	
  n.	
  
For	
  example,	
  	
  
h0(0)	
  	
  =	
  	
  h(0),	
  	
  	
  	
  	
  	
  	
  	
  	
  h0(M)	
  	
  =	
  	
  h(M),	
  	
  	
  	
  	
  	
  	
  	
  	
  h0(2M)	
  	
  =	
  	
  h(2M),	
  	
  	
  	
  	
  	
  	
  etc	
  
h1(0)	
  	
  =	
  	
  h(1),	
  	
  	
  	
  	
  	
  	
  	
  	
  h1(M)	
  	
  =	
  	
  h(M+1),	
  	
  	
  	
  	
  h1(2M)	
  	
  =	
  	
  h(2M+1),	
  	
  etc	
  
h2(0)	
  	
  =	
  	
  h(2),	
  	
  	
  	
  	
  	
  	
  	
  	
  h2(M)	
  	
  =	
  	
  h(M+2),	
  	
  	
  	
  	
  h2(2M)	
  	
  =	
  	
  h(2M+2),	
  	
  etc	
  
.	
  	
  	
  	
  
hM-­‐1(0)	
  =	
  h(M-­‐1),	
  	
  hM-­‐1(M)	
  =	
  	
  h(2M-­‐1),	
  hM-­‐1(2M)	
  =	
  	
  h(3M-­‐1),	
  etc	
  
	
  

  
Y(ejω) = Xb(e

jω)H(zL)
z=ejω

  = X(ejωL)H(ejωL)

  Y(ejω)   Y(ejω)

  
h(n) = hk(n − k)

k=0

M−1

∑

{
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The	
  figure	
  below	
  shows	
  how	
  the	
  h0(n),	
  h1(n),	
  .	
  .	
  .	
  ,	
  hk(n)	
  can	
  be	
  obtained	
  from	
  h(n)	
  and	
  also	
  how	
  
these	
  could	
  all	
  be	
  combined	
  to	
  regenerate	
  h(n).	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Note	
  that	
  for	
  each	
  value	
  of	
  k,	
  the	
  result	
  of	
  down-­‐sampling	
  is	
  	
  
	
  
	
  
Consider	
  the	
  output	
  of	
  the	
  up-­‐sampling	
  step	
  on	
  the	
  k-­‐th	
  path:	
  	
  temporarily	
  call	
  this	
  	
  output	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  
	
  
	
  	
  	
  
	
  
	
  
	
  

  ek(n) = h(nM + k)

yk(n) = ek
n
M
!

"
##

$

%
&&   for n = integeriM 

       = 0  for other n                                                 

or    yk(n) = h nM
M

+ k
!

"
##

$

%
&& =  h(n + k) for n = integeriM

                           = 0  for other n      

Figure	
  4.35	
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yk(n)

Therefore,	
   yk(n) = hk n( )        based	
  on	
  previous	
  defini%on	
  of	
  	
  hk n( ).       



	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Example:	
  	
  Construc%ng	
  the	
  	
  ek(n)	
  from	
  h(n):	
  
e0(0)	
  =	
  h(0) 	
   	
  e1(0)	
  =	
  h(1) 	
   	
  e2(0)	
  =	
  h(2)	
   	
  	
  	
  	
  	
  .	
  .	
  .	
  	
  	
  	
  	
  	
  eM-­‐1(0)	
  =	
  h(M-­‐1)	
  	
  	
  	
  	
  	
  
e0(1)	
  =	
  h(M) 	
   	
  e1(1)	
  =	
  h(M+1) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  e2(1)	
  =	
  h(M+2)	
  	
  	
  	
  	
  	
  	
  	
  .	
  .	
  .	
  	
  	
  	
  	
  	
  eM-­‐1(1)	
  =	
  h(2M-­‐1)	
  
e0(2)	
  =	
  h(2M) 	
   	
  e1(2)	
  =	
  h(2M+1)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  e2(2)	
  =	
  h(2M+2)	
  	
  	
  	
  	
  	
  .	
  .	
  .	
  	
  	
  	
  	
  	
  eM-­‐1(1)	
  =	
  h(3M-­‐1)	
  	
  
	
  	
  	
  	
  	
  	
  (etc) 	
   	
   	
  	
  	
  	
  	
  	
  	
  (etc)	
  
	
  

  ek(n) = h(nM + k)

Figure	
  4.35	
  

(Repeated	
  figure)	
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Applying	
  up-­‐sampling	
  to	
  the	
  ek(n)	
  for	
  each	
  k	
  then	
  produces	
  hk(n)	
  for	
  that	
  k.	
  	
  (Recall	
  that	
  up-­‐
sampling	
  involves	
  inser%ng	
  M-­‐1	
  zeros	
  between	
  each	
  input	
  signal	
  value.)	
  
	
  
h0(0)	
  =	
  h(0) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  h1(0)	
  =	
  h(1) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  h2(0)	
  =	
  h(2)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (etc)	
  
h0(1)	
  =	
  0 	
   	
   	
  h1(1)	
  =	
  	
  0 	
   	
   	
  h2(1)	
  =	
  0	
  
h0(2)	
  =	
  0 	
   	
   	
  h1(2)	
  =	
  	
  0 	
   	
   	
  h2(2)	
  =	
  0	
  
	
  
h0(M)	
  =	
  h(M)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  h1(M)	
  =	
  h(M+1) 	
   	
  h2(M)	
  =	
  h(M+2) 	
  	
  
h0(M+1)	
  =	
  0 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  h1(M+1)	
  =	
  	
  0 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  h2(M+1)	
  =	
  	
  0 	
  	
  
h0(M+2)	
  =	
  0 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  h1(M+2)	
  =	
  0 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  h2	
  (M+2)	
  =	
  	
  0	
  
	
  	
  
h0(2M)	
  =	
  h(2M) 	
   	
  h1(2M)	
  =	
  h(2M+1) 	
   	
  h2(2M)	
  =	
  h(3M+2)	
  	
  	
  	
  	
  	
  	
  	
  (etc)	
  
	
  
In	
  order	
  to	
  reconstruct	
  h(n)	
  from	
  the	
  hk(n),	
  we	
  can	
  delay	
  each	
  hk(n)	
  by	
  k,	
  and	
  then	
  sum	
  (as	
  shown	
  
in	
  figure	
  4.35),	
  to	
  get	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa%on.	
  4.106)	
  	
  
	
  
which	
  can	
  be	
  expanded	
  as	
  
	
  

  
h(n) = hk(n − k)

k=0

M−1

∑

   h(n) = h0(n) + h1(n −1) + h2(n − 2) + + hM−1(n − M +1)
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The	
  following	
  table	
  shows	
  the	
  values	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  k	
  =	
  0,	
  1	
  ,	
  2,	
  and	
  M-­‐1	
  for	
  selected	
  values	
  of	
  n:	
  
	
  

  hk(n − k) 8	
  



Now	
  analyze	
  the	
  system	
  of	
  fig.	
  4.32	
  from	
  a	
  frequency	
  domain	
  perspec%ves:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  frequency	
  domain	
  rela%on	
  between	
  ek(n)	
  and	
  its	
  up-­‐sampled	
  counterpart,	
  hk(n),	
  is	
  	
  
	
  
In	
  the	
  z-­‐domain,	
  the	
  previous	
  expression	
  can	
  be	
  wriQen	
  as	
  
	
  
The	
  overall	
  contribu%on	
  to	
  H(z)	
  along	
  the	
  k-­‐th	
  path	
  in	
  the	
  above	
  figure	
  is	
  
	
  
The	
  overall	
  H(z)	
  is	
  the	
  sum	
  of	
  the	
  k	
  contribu%ons:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
This	
  represents	
  the	
  implementa%on	
  of	
  H(z)	
  using	
  a	
  parallel	
  configura%on	
  of	
  polyphase	
  filters.	
  

  Hk(e
jω) = Ek(e

jωM)

  Hk(z) = Ek(z
M)

  Hk(z)z−k = Ek(z
M)z−k

  
H(z) = Ek(z

M)
k=0

M−1

∑ z−k
	
  (equa%on	
  4.108)	
  

Figure	
  4.35	
  	
  Polyphase	
  decomposi%on	
  of	
  filter	
  h(n)	
  using	
  components	
  ek[n].	
  

(Repeated	
  figure)	
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Note	
  that	
  the	
  above	
  configura%on	
  for	
  genera%ng	
  and	
  then	
  recombining	
  the	
  hk(n)	
  can	
  
be	
  modified	
  to	
  use	
  chains	
  of	
  single	
  delay	
  units,	
  instead	
  of	
  a	
  parallel	
  bank	
  of	
  different	
  
delays,	
  as	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure	
  4.36	
  Polyphase	
  
decomposi%on	
  of	
  filter	
  h[n]	
  
using	
  components	
  ek(n)	
  
with	
  channel	
  delays.	
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The	
  overall	
  filter	
  having	
  unit	
  sample	
  response	
  h(n)	
  can	
  be	
  represented	
  
compactly	
  in	
  the	
  z-­‐domain	
  in	
  the	
  following	
  form.	
  	
  (Refer	
  to	
  equa%on	
  4.108,	
  
repeated	
  below:)	
  

  
H(z) = Ek(z

M)
k=0

M−1

∑ z−k 	
  (equa%on	
  4.108,	
  repeated)	
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Note	
  that	
  for	
  a	
  given	
  h(n),	
  the	
  ek(n)	
  and	
  then	
  Ek(z)	
  can	
  be	
  obtained	
  as	
  shown	
  in	
  Figure	
  4.36.	
  
	
  
Important	
  example	
  of	
  polyphase	
  decomposi@on	
  of	
  h(n):	
  	
  when	
  we	
  want	
  to	
  follow	
  a	
  linear	
  filter	
  
with	
  downsampling,	
  as	
  shown	
  in	
  the	
  diagram	
  below:	
  
	
  
	
  
	
  
For	
  polyphase	
  decomposi%on,	
  we	
  implement	
  H(z)	
  as	
  was	
  shown	
  in	
  Figure	
  4.37	
  (on	
  previous	
  slide)	
  
The	
  overall	
  opera%on	
  of	
  Figure	
  4.38	
  (including	
  H(z)	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  is	
  shown	
  below	
  in	
  Figure	
  4.39:	
  
	
  
	
  
	
  

Figure	
  4.38	
  Decima%on	
  System	
  

Figure	
  4.39	
  	
  Implementa%on	
  of	
  
decima%on	
  filter	
  using	
  polyphase	
  
decomposi%on.	
  

↓ M
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Finally,	
  as	
  shown	
  earlier	
  in	
  this	
  unit,	
  we	
  can	
  commute	
  the	
  opera%ons	
  of	
  downsampling	
  and	
  	
  
linear	
  filtering	
  in	
  the	
  previous	
  figure	
  (	
  and	
  replace	
  each	
  Ek(zM)	
  with	
  Ek(z)	
  )	
  so	
  the	
  above	
  figure	
  can	
  
be	
  represented	
  as	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Efficiency	
  of	
  above	
  approach:	
  
	
  	
  
Consider	
  the	
  case	
  where	
  H(z)	
  is	
  an	
  N-­‐point	
  FIR	
  filter	
  where	
  the	
  input	
  is	
  clocked	
  at	
  1	
  sample	
  per	
  
unit	
  %me.	
  	
  The	
  filter	
  output	
  y(n)	
  is	
  also	
  generated	
  at	
  this	
  rate.	
  
A	
  direct	
  Implementa%on	
  of	
  Figure	
  4.38	
  requires	
  the	
  following	
  computa%ons:	
  
•	
  N	
  mul@plica@ons	
  (MPYs)	
  per	
  unit	
  @me	
  
•	
  N-­‐1	
  addi@ons	
  (ADDs)	
  per	
  unit	
  @me	
  
	
  	
  
	
  
	
  

Figure	
  4.40	
  Implementa%on	
  of	
  decima%on	
  filter	
  
aZer	
  applying	
  the	
  downsampling	
  iden%ty	
  to	
  
polyphase	
  decomposi%on.	
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For	
  the	
  implementa%on	
  of	
  Fig.	
  4.40:	
  
For	
  each	
  of	
  M	
  sub-­‐filters:	
  
	
  
#	
  MPYs	
  
(N/M	
  MPYs	
  per	
  sub-­‐filter	
  output)	
  	
  
x	
  (1/M	
  sub-­‐filter	
  outputs	
  per	
  unit	
  @me)	
  	
  
=	
  N/M2	
  MPYs	
  per	
  unit	
  @me.	
  
	
  
#	
  ADDs	
  
(N/M)-­‐1	
  ADDs	
  per	
  subfilter	
  output)	
  
x	
  (1/M	
  sub-­‐filter	
  outputs	
  per	
  unit	
  @me)	
  	
  	
  
=	
  	
  [(N/M)-­‐1]/M	
  ADDs	
  per	
  unit	
  @me	
  
	
  
Total	
  for	
  all	
  M	
  sub-­‐filters,	
  per	
  unit	
  @me:	
  	
  
M	
  (N/M2)	
  =	
  N/M	
   	
  MPYs	
  	
  (compare	
  with	
  N	
  for	
  Figure	
  4.38)	
  
	
  
M[(N/M)-­‐1]/M	
  	
  
+	
  	
  (M-­‐1)	
  ADDs	
  	
  	
  (to	
  combine	
  sub-­‐filter	
  outputs)	
  
=	
  [(N/M)-­‐1]	
  +	
  (M-­‐1)	
  ADDs	
  	
  	
  (compare	
  with	
  N-­‐1	
  for	
  Figure	
  4.38)	
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If	
  	
  N	
  =	
  40	
  and	
  M	
  =	
  4:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  direct	
  method	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  polyphase	
  method	
  

MPYs 	
   	
  	
  N	
  =	
  40 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  N/M	
  =	
  40/4	
  =	
  10	
  
ADDs 	
   	
  	
  N-­‐1	
  =	
  39 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [(N/M)-­‐1]	
  +	
  (M-­‐1)	
  =	
  (10-­‐1)	
  +	
  (4-­‐1)	
  =	
  12	
  
	
  
Polyphase	
  Implementa@on	
  of	
  System	
  Consis@ng	
  of	
  a	
  Up-­‐Sampler	
  Followed	
  by	
  a	
  Filter	
  
	
  
	
  
	
  
If	
  H(z)	
  is	
  implemented	
  using	
  a	
  polyphase	
  decomposi%on,	
  the	
  above	
  figure	
  becomes:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
(Note	
  that	
  Figure	
  4.42	
  has	
  implemented	
  the	
  delays	
  of	
  Figure	
  4.37	
  at	
  the	
  output	
  of	
  each	
  sub-­‐filter,	
  
rather	
  than	
  at	
  its	
  input.)	
  
	
  

Figure	
  4.41	
  Interpola%on	
  system	
  	
  

Figure	
  4.42	
  Implementa%on	
  of	
  interpola%on	
  
filter	
  using	
  polyphase	
  decomposi%on.	
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Then,	
  using	
  the	
  equivalences	
  of	
  Figure	
  4.32,we	
  can	
  interchange	
  the	
  order	
  of	
  up-­‐sampling	
  and	
  
filtering	
  (with	
  each	
  Ek(zL)	
  replaced	
  with	
  Ek(z),	
  to	
  express	
  the	
  above	
  as	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Compare	
  the	
  efficiency	
  of	
  implement	
  of	
  Figure	
  4.43	
  with	
  direct	
  implementa%on	
  of	
  	
  Figure	
  4.41:	
  
Again	
  assume	
  that	
  H(z)	
  is	
  an	
  N-­‐point	
  FIR	
  filter	
  where	
  the	
  overall	
  system	
  input	
  x(n)	
  is	
  clocked	
  at	
  1	
  
sample	
  per	
  unit	
  %me.	
  	
  	
  Therefore,	
  the	
  filter	
  input,	
  w(n),	
  is	
  clocked	
  at	
  a	
  rate	
  of	
  	
  L	
  samples	
  per	
  unit	
  
%me.	
  	
  A	
  direct	
  implementa%on	
  of	
  Figure	
  4.41	
  thus	
  requires	
  the	
  following	
  computa%ons:	
  
	
  
•	
  NL	
  MPYs	
  per	
  unit	
  @me	
  
•	
  (NL-­‐1)	
  ADDs	
  per	
  unit	
  @me	
  
	
  

Figure	
  4.43	
  Implementa%on	
  of	
  interpola%on	
  
filter	
  aZer	
  applying	
  the	
  upsampling	
  iden%ty	
  to	
  
the	
  polyphase	
  decomposi%on.	
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In	
  comparison,	
  the	
  implementa%on	
  in	
  Figure	
  4.43	
  requires	
  the	
  following	
  computa%ons	
  for	
  	
  	
  	
  	
  	
  	
  
each	
  sub-­‐filter:	
  
N/L	
  MPYs	
  per	
  unit	
  @me	
  
and	
  	
  
(N/L)	
  -­‐1	
  ADDs	
  per	
  unit	
  @me.	
  
	
  
Total	
  For	
  all	
  L	
  sub-­‐filters,	
  per	
  unit	
  %me:	
  
L(N/L)	
  =	
  N	
  MPYs	
  	
  (compare	
  with	
  NL)	
  
The	
  total	
  number	
  of	
  ADDs	
  is	
  	
  
L[(N/L)	
  -­‐1]	
  =	
  N	
  -­‐	
  L	
  	
  
+(L-­‐1)	
  	
  (to	
  combine	
  the	
  sub-­‐filter	
  outputs)	
  
=	
  	
  (N	
  -­‐	
  L)	
  +	
  (L	
  -­‐	
  1)	
  =	
  N	
  -­‐1	
  ADDs	
  	
  	
  	
  	
  (compare	
  with	
  NL-­‐1)	
  
	
  
Compare	
  for	
  the	
  case	
  of	
  N	
  =	
  40	
  and	
  L	
  =	
  4:	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  direct	
  method	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  polyphase	
  method	
  
MPYs 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  NL	
  =	
  40(4)	
  =	
  160	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  N	
  =	
  40	
  
ADDs 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  NL-­‐1	
  =	
  159 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  N-­‐1	
  =	
  39	
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