
ECE	
  8440	
  -­‐	
  Unit	
  4	
  
Digital	
  Processing	
  of	
  Analog	
  Signals-­‐-­‐Non-­‐Ideal	
  Case	
  (See	
  sec8on	
  4.8)	
  
Before	
  considering	
  the	
  non-­‐ideal	
  case,	
  recall	
  the	
  ideal	
  case:	
  
	
  
	
  
	
  
	
  
	
  
Assump8ons	
  involved	
  in	
  ideal	
  case:	
  
-­‐	
  no	
  aliasing	
  
-­‐	
  no	
  quan8za8on	
  errors	
  in	
  conver8ng	
  from	
  con8nuous	
  8me	
  to	
  discrete	
  8me	
  
-­‐  ideal	
  impulse	
  generator	
  and	
  ideal	
  low-­‐pass	
  filters	
  used	
  in	
  implemen8ng	
  D/C	
  converter	
  

-­‐  Realizable	
  system	
  used	
  to	
  approximate	
  the	
  ideal	
  system	
  is	
  shown	
  below:	
  
	
  
	
  

Figure	
  4.47	
  (b)	
  Digital	
  Processing	
  of	
  Analog	
  Signals	
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Use	
  of	
  an8-­‐aliasing	
  filter:	
  
Recall	
  figure	
  from	
  ECE	
  667	
  text	
  (Ludeman):	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Ideally,	
  the	
  an8-­‐aliasing	
  filter	
  should	
  sa8sfy	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa8on	
  4.118)	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  
If	
  an8-­‐aliasing	
  filter	
  is	
  ideal	
  (and	
  the	
  D/C	
  converter	
  is	
  ideal),	
  then	
  the	
  overall	
  frequency	
  response	
  	
  
between	
  the	
  input	
  xc(t)	
  and	
  the	
  output	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  
	
  
	
  

  Haa(jΩ) = 1 | Ω |< Ωc ≤
π

T
  Haa(jΩ) = 0   | Ω |> Ωc

  ̂yr(t)

  Heff(jΩ) = H(ejΩT) | Ω |  < Ωc ≤
π

T
  Heff(jΩ) = 0   | Ω |  > Ωc
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However,	
  since	
  the	
  an8-­‐aliasing	
  filter	
  is	
  not	
  perfectly	
  flat	
  the	
  actual	
  overall	
  frequency	
  response	
  	
  	
  
of	
  the	
  above	
  system	
  is	
  
	
  
Note:	
  	
  The	
  closer	
  	
  	
  	
  	
  is	
  to	
  π/T	
  the	
  more	
  difficult	
  it	
  is	
  to	
  approximate	
  an	
  ideal	
  an8-­‐aliasing	
  filter	
  over	
  
the	
  desired	
  filter's	
  passband.	
  
	
  
Problems	
  with	
  using	
  "approximately	
  ideal"	
  an8-­‐aliasing	
  filters	
  :	
  
-­‐	
  expensive	
  
-­‐	
  generally	
  have	
  highly	
  non-­‐linear	
  phase.	
  
	
  	
  
Alterna8ve	
  approach:	
  
Step	
  1.	
  	
  	
  "over-­‐sample"	
  the	
  input	
  so	
  that	
  so	
  that	
  the	
  frequencies	
  of	
  interest	
  in	
  the	
  signal,	
  a\er	
  
sampling,	
  sa8sfy	
  	
  
	
  
Stated	
  in	
  terms	
  of	
  the	
  analog	
  input,	
  select	
  the	
  sampling	
  rate	
  1/T	
  to	
  sa8sfy	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  highest	
  frequency	
  of	
  interest	
  in	
  xc(t)	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  highest	
  frequency	
  that	
  the	
  
"cheap"	
  ("simple”)	
  an8-­‐aliasing	
  filter	
  passes.	
  	
  	
  (See	
  Figure	
  4.50	
  on	
  next	
  slide.)	
  	
  Assume	
  that	
  this	
  
involves	
  a	
  sampling	
  rate	
  that	
  is	
  M	
  8mes	
  the	
  Nyquist	
  rate.	
  	
  That	
  is,	
  
	
  
	
  

   Heff(jΩ)  Haa(jΩ)H(ejΩT)

 Ωc

 ω < ωN << π

 
2π
T − Ωc

⎛

⎝⎜
⎞

⎠⎟
> ΩN

 ΩN

 

1
T > M ΩN

π

⎛

⎝
⎜

⎞

⎠
⎟

 Ωc
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Step	
  2.	
  	
  Apply	
  a	
  sharp	
  cut-­‐off	
  digital	
  filter	
  to	
  remove	
  high	
  frequencies	
  out	
  of	
  the	
  range	
  of	
  interest.	
  	
  
(The	
  digital	
  filter	
  can	
  also	
  have	
  linear	
  phase.)	
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Step	
  3.	
  	
  Apply	
  down-­‐sampling	
  by	
  the	
  value	
  of	
  M	
  that	
  is	
  used	
  in	
  Step	
  1.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Analog-­‐to-­‐Digital	
  Conversion	
  	
  (prac>cal	
  realiza>on	
  of	
  C/D	
  conversion)	
  
Non-­‐ideal	
  proper8es:	
  
-­‐conversion	
  cannot	
  be	
  performed	
  instantaneously	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐therefore,	
  a	
  Sample/Hold	
  circuit	
  is	
  typically	
  used	
  
-­‐quan8za8on	
  error	
  arise	
  due	
  to	
  using	
  a	
  finite	
  no.	
  of	
  bits	
  to	
  represent	
  signals	
  that	
  have	
  a	
  
con8nuous	
  range	
  of	
  possible	
  values	
  
	
  
If	
  an	
  A/D	
  converter	
  uses	
  B	
  output	
  bits	
  to	
  represent	
  a	
  signal	
  whose	
  possible	
  range	
  of	
  input	
  values	
  
is	
  from	
  0	
  to	
  Xm,	
  the	
  "step	
  size"	
  (resolu8on)	
  of	
  the	
  converter	
  is	
  
	
  
	
  
	
  

 
Xm

2B = Δ

Figure	
  4.50	
  Use	
  of	
  oversampling	
  followed	
  by	
  decima8on	
  in	
  C/D	
  
conversison.	
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Similarly,	
  if	
  the	
  A/D	
  converter	
  uses	
  B+1	
  bits	
  to	
  represent	
  inputs	
  which	
  can	
  be	
  posi8ve	
  or	
  nega8ve	
  
with	
  magnitude	
  up	
  to	
  Xm	
  ,	
  then	
  the	
  step	
  size	
  is	
  
	
  
	
  
As	
  can	
  be	
  seen	
  in	
  the	
  figure	
  below,	
  the	
  maximum	
  quan8za8on	
  error	
  for	
  an	
  A/D	
  converter	
  with	
  
step	
  size	
  	
  	
  	
  	
  	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (as	
  long	
  as	
  the	
  output	
  is	
  not	
  forced	
  into	
  satura8on	
  in	
  the	
  top	
  or	
  boeom	
  
levels).	
  
	
  
	
  

 
2Xm

2B+1 =
Xm

2B = Δ

Δ  Δ 2

Figure	
  4.54	
  Typical	
  quan8zer	
  for	
  A/D	
  conversion	
  

Offset	
  binary	
  
Code	
  
	
  

111	
  

110	
  

101	
  

100	
  

011	
  

010	
  

001	
  

000	
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Analysis	
  of	
  Quan>za>on	
  Errors	
  due	
  to	
  A/D	
  Conversion	
  
If	
  the	
  perfectly	
  represented	
  discrete	
  8me	
  signal	
  is	
  x(n)	
  and	
  the	
  actual	
  output	
  of	
  the	
  A/D	
  converter	
  
is	
  	
  	
  	
  	
  	
  	
  	
  ,	
  then	
  the	
  A/D	
  quan8za8on	
  error	
  e(n)	
  is	
  defined	
  as	
  
	
  
Feeding	
  the	
  output	
  of	
  an	
  A/D	
  converter	
  into	
  the	
  digital	
  filter	
  effec8vely	
  introduces	
  a	
  noise	
  
component	
  (due	
  to	
  quan8za8on)	
  along	
  with	
  the	
  desired	
  input	
  signal	
  
	
  
	
  
	
  
	
  
	
  
	
  
Size	
  of	
  quan8za8on	
  error:	
  
As	
  seen	
  on	
  the	
  previous	
  page,	
  the	
  quan8za8on	
  error	
  range	
  is:	
  	
  	
  
	
  
This	
  range	
  of	
  error	
  values	
  is	
  valid	
  as	
  long	
  as	
  the	
  input	
  signal	
  stays	
  within	
  the	
  allowed	
  range.	
  	
  For	
  a	
  
“mid-­‐tread”	
  A/D	
  converter	
  as	
  shown	
  on	
  the	
  previous	
  slide,	
  this	
  condi8on	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (Refer	
  to	
  fig.	
  4.54	
  )	
  	
  
	
  
If	
  x(n)	
  exceeds	
  this	
  range,	
  then	
  	
  larger,	
  "clipping"	
  quan8za8on	
  errors	
  occur.	
  
	
  
	
  
	
  

  ̂x(n)

  e(n) = x̂(n) − x(n).

 −Δ 2 < e n( ) < Δ 2

 −Xm − Δ 2( ) < x n( ) < Xm − Δ 2( )

Figure	
  4.56	
  Addi8ve	
  noise	
  model	
  for	
  
quan8zer.	
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In	
  order	
  to	
  perform	
  a	
  sta8s8cal	
  evalua8on	
  of	
  the	
  effect	
  of	
  A/D	
  quan8za8on	
  errors,	
  several	
  
assump8ons	
  are	
  typically	
  made:	
  
	
  
1.	
  e(n)	
  is	
  the	
  realiza8on	
  of	
  sta8onary	
  random	
  process	
  
2.	
  e(n)	
  is	
  uncorrelated	
  with	
  the	
  input	
  x(n)	
  
3.	
  e(n)	
  is	
  uncorrelated	
  with	
  e(m)	
  for	
  n	
  ≠	
  m.	
  	
  That	
  is,	
  e(n)	
  is	
  a	
  "white	
  noise"	
  process	
  
4.	
  e(n)	
  has	
  a	
  uniform	
  probability	
  density	
  func8on	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
These	
  assump8ons	
  are	
  reasonable	
  when:	
  
	
  	
  
•	
  the	
  input	
  signal	
  is	
  "sufficiently	
  complex"	
  	
  (e.g.,	
  speech,	
  music)	
  
	
  (example	
  of	
  "not	
  sufficiently	
  complex":	
  	
  a	
  step	
  func8on	
  or	
  a	
  low	
  order	
  polynomial,	
  such	
  as	
  a	
  line)	
  
•	
  the	
  input	
  amplitude	
  typically	
  traverses	
  many	
  quan8za8on	
  steps	
  from	
  sample	
  to	
  sample.	
  
	
  	
  
	
  
	
  

Figure	
  4.58	
  Probability	
  density	
  
Func8on	
  of	
  quan8za8on	
  error	
  for	
  a	
  
Rounding	
  quan8er	
  such	
  as	
  that	
  of	
  
Figure	
  4.54.	
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The	
  second	
  condi8on	
  (transversal	
  of	
  many	
  quan8za8on	
  steps)	
  becomes	
  easier	
  to	
  sa8sfy	
  as	
  the	
  number	
  of	
  
quan8za8on	
  levels	
  is	
  increased,	
  as	
  seen	
  in	
  the	
  figure	
  below.	
  	
  	
  
	
  
Note	
  the	
  "clipping''	
  error	
  in	
  part	
  c	
  of	
  the	
  figure.	
  
	
  

Figure	
  4.57	
  Example	
  of	
  quan8za8on	
  noise	
  	
  

(d)	
  Quan8za8on	
  error	
  sequence	
  for	
  
8-­‐bit	
  quan8za8on	
  of	
  signal	
  of	
  part	
  (a)	
  

(c)	
  Quan8za8on	
  error	
  sequence	
  for	
  
3-­‐bit	
  quan8za8on	
  of	
  signal	
  of	
  part	
  (a)	
  

(b)	
  Quan8zed	
  samples	
  of	
  signal	
  in	
  
	
  part	
  (a)	
  with	
  a	
  3-­‐bit	
  quan8zer	
  

(a)  Unquan8zed	
  samples	
  of	
  	
  the	
  	
  
signal	
  x(n)=.99kcos(π/10)	
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Sta8s8cal	
  representa8on	
  of	
  quan8za8on	
  errors:	
  
If	
  the	
  above	
  assump8on	
  that	
  e(n)	
  is	
  uniformly	
  distributed	
  is	
  valid,	
  then	
  the	
  mean	
  value	
  of	
  e(n)	
  is	
  
0,	
  	
  and	
  the	
  variance	
  of	
  e(n)	
  can	
  be	
  found	
  as	
  follows:	
  
	
  
	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  
	
  
	
  
	
  
O\en	
  the	
  effect	
  of	
  quan8za8on	
  error	
  is	
  expressed	
  in	
  terms	
  of	
  db	
  of	
  the	
  signal-­‐to-­‐noise	
  ra8o:	
  
	
  
	
  
	
  
	
  
	
  
	
  
In	
  other	
  to	
  have	
  an	
  input	
  signal	
  to	
  the	
  A/D	
  whose	
  typical	
  input	
  values	
  span	
  the	
  en8re	
  input	
  range	
  
of	
  the	
  A/D,	
  but	
  for	
  which	
  there	
  liele	
  chance	
  of	
  clipping,	
  we	
  would	
  typically	
  adjust	
  the	
  input	
  level	
  
to	
  sa8sfy:	
  
	
  

  
σe

2 = e2

−Δ/2

Δ/2

∫
1
Δ

⎛

⎝⎜
⎞

⎠⎟
de = Δ2

12

 
Δ =

Xm

2B

 
σe

2 = 1
12

Xm

2B

⎛

⎝
⎜

⎞

⎠
⎟

2

=
Xm

2 2−2B

12

  
SNR = 10log10

σx
2

σe
2

  
= 10log10

σx
2

Xm
2 2−2B /12

  
= 10log10

12 ⋅22Bσx
2

Xm
2

⎛

⎝
⎜

⎞

⎠
⎟

 Xm = 4σx
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Then	
  the	
  resul8ng	
  SNR	
  becomes	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Therefore,	
  each	
  addi8onal	
  bit	
  in	
  an	
  A/D	
  output	
  contributes	
  approximately	
  6	
  db	
  to	
  the	
  SNR	
  
performance.	
  
	
  
Example:	
  
If	
  90	
  -­‐	
  96	
  db	
  of	
  SNR	
  is	
  required	
  (as	
  in	
  high	
  quality	
  music	
  recording),	
  then	
  the	
  required	
  no.	
  of	
  bits	
  
in	
  the	
  A/D	
  output	
  can	
  be	
  calculated	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (for	
  90	
  db	
  SNR)	
  	
  
	
  
or	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (for	
  96	
  db	
  SNR)	
  
	
  

  

SNR = 10log10

12 ⋅22B Xm

4
⎛

⎝
⎜

⎞

⎠
⎟

2

Xm
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

  = 10log10[3 ⋅22B−2]

  = 10[log10(3) + (2B − 2)log10(2)]

  = 10[.477 + (2B − 2)(.301)]
  = 6.02B −1.25db
  ≈ 6B −1.25db

  
B = 90 +1.25

6 = 15.2

  
B = 96 +1.25

6 = 16.2
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D/A	
  Conversion	
  
Recall	
  that	
  the	
  ideal	
  D/C	
  conversion	
  process	
  can	
  be	
  represented	
  in	
  the	
  8me	
  domain	
  as	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa8on	
  4.140)	
  
	
  
(This	
  is	
  the	
  "reconstruc8on	
  formula"	
  which	
  is	
  a	
  by-­‐product	
  of	
  developing	
  the	
  Sampling	
  Theorem.)	
  
Mathema8cally,	
  this	
  is	
  equivalent	
  to	
  genera8ng	
  a	
  train	
  of	
  analog	
  impulse	
  scaled	
  by	
  x(n),	
  then	
  
feeding	
  the	
  pulse	
  train	
  into	
  an	
  ideal	
  low-­‐pass	
  filter,	
  as	
  shown	
  below	
  and	
  derived	
  on	
  the	
  next	
  
slide.	
  
	
  

  

xr(t) = x(n)
sin[π

T
(t − nT)]

π
T

(t − nT)n=−∞

∞

∑

Figure	
  4.7(a)	
  Block	
  diagram	
  of	
  an	
  deal	
  	
  
bandlimited	
  signal	
  reconstruc8on	
  system.	
  

(b)	
  Frequency	
  response	
  of	
  an	
  ideal	
  
reconstruc8on	
  filter.	
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This	
  pulse	
  train	
  can	
  be	
  represented	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa8on	
  4.22)	
  
The	
  impulse	
  response	
  of	
  an	
  ideal	
  low-­‐pass	
  filter	
  having	
  cutoff	
  equal	
  to	
  π/T	
  and	
  with	
  gain	
  of	
  T	
  is	
  

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa8on	
  4.24)	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  response	
  of	
  this	
  low-­‐pass	
  filter	
  to	
  the	
  input	
  xs(t)	
  is	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equivalent	
  to	
  equa8on	
  4.25)	
  
	
  
	
  
	
  
	
  
	
  

  
xs(t) = x(n)δ(t − nT)

n=−∞

∞

∑ .

hr(t) =
sin(πt / T)

πt / T
.

  
xr(t) = xs(τ)

−∞

∞

∫ hr(t − τ)dτ

  
= x(n)δ(τ − nT)

n=−∞

∞

∑
−∞

∞

∫ hr(t − τ)dτ

  
= x(n)

n=−∞

∞

∑ δ(τ − nT)hr(t − τ)dτ
−∞

∞

∫

  
= x(n)hr(t − nT)

n=−∞

∞

∑

Figure	
  4.7	
  (c)	
  Impulse	
  response	
  of	
  an	
  
Ideal	
  reconstruc8on	
  filter.	
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To	
  obtain	
  a	
  frequency	
  domain	
  descrip8on	
  of	
  the	
  ideal	
  reconstruc8on	
  process,	
  take	
  the	
  
con8nuous	
  8me	
  Fourier	
  Transform	
  of	
  of	
  the	
  output	
  xr(t):	
  
	
  
	
  
	
  
	
  
	
  
	
  
If	
  we	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  above	
  can	
  be	
  wrieen	
  as	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
So	
  	
  	
  	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  an	
  ideal	
  low-­‐pass	
  filter	
  with	
  gain	
  =	
  T,	
  as	
  was	
  shown	
  previously	
  in	
  figure	
  4.7.	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  above	
  equa8on	
  can	
  be	
  wrieen	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa8on	
  4.28)	
  
	
  
	
  

  
Xr(jΩ) = xr(t)e

− jΩt

−∞

∞

∫ dt

  
= x(n)hr(t − nT)

n=−∞

∞

∑
⎛

⎝⎜
⎞

⎠⎟
e− jΩt

−∞

∞

∫ dt

  
= x(n)

n=−∞

∞

∑ hr(t − nT)e− jΩt

−∞

∞

∫ dt

 τ = t − nT

  
= x(n)

n=−∞

∞

∑ hr(τ)e
− jΩ(τ+nT)

−∞

∞

∫ dτ

  
= x(n)

n=−∞

∞

∑ e− jΩnT hr(τ)e
− jΩτ

−∞

∞

∫ dτ

  
= x(n)

n=−∞

∞

∑ e− jΩnTHr(jΩ)

  = X(ejω)Hr(jΩ)

  Xr(jΩ) = X(ejω)Hr(jΩ)

  Hr(jΩ)

 ω = ΩT

  Xr(jΩ) = X(ejΩT)Hr(jΩ)
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  D/A	
  converters	
  
A	
  D/A	
  converter	
  is	
  a	
  prac8cal	
  realiza8on	
  (and	
  approxima8on)	
  of	
  the	
  ideal	
  D/C	
  converter.	
  
A	
  typical	
  D/A	
  converter	
  uses	
  a	
  zero-­‐order	
  hold	
  to	
  preserve	
  the	
  most	
  recent	
  analog	
  conversion	
  
value,	
  as	
  shown	
  in	
  the	
  figure	
  below.	
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The	
  opera8on	
  of	
  a	
  zero-­‐order	
  hold	
  can	
  be	
  represented	
  mathema8cally	
  as	
  
	
  	
  
	
  	
  	
  
where	
  
	
  	
  
and	
  	
  
	
  
	
  
It	
  is	
  useful	
  to	
  note	
  that	
  the	
  genera8on	
  of	
  xo(t)	
  from	
  x(n)	
  can	
  also	
  be	
  represented	
  by	
  a	
  convolu8on	
  
of	
  a	
  weighted	
  impulse	
  train	
  with	
  ho(t):	
  
	
  
	
  
	
  
	
  
To	
  view	
  the	
  effect	
  of	
  the	
  zero-­‐order	
  hold	
  in	
  the	
  frequency	
  domain,	
  take	
  the	
  Fourier	
  Transform	
  of	
  
ho(t):	
  
	
  

  
xo(t) = x(n)ho(t − nT)

n=−∞

∞

∑

  ho(t) = 1, 0 < t < T

  ho(t) = 0, otherwise

  
xo(t) = ho(t) * x(n)δ(t − nT)

n=−∞

∞

∑

  
= x(n)ho(t − nT)

n=−∞

∞

∑ .

  
Ho(jΩ) = ho(t)e

− jΩt dt
−∞

∞

∫
  
= 1 e− jΩt dt

0

T

∫

  
= e− jΩt

− jΩ 0

T

 =  −  
e− jΩT −1⎡⎣ ⎤⎦

jΩ  =  
1− e− jΩT⎡⎣ ⎤⎦

jΩ

  
= e− jΩT

2

e
jΩT
2 − e− jΩT

2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

jΩ    =    2
Ω

sin ΩT
2

⎛

⎝⎜
⎞

⎠⎟
e− jΩT

2 (equa8on	
  4.150)	
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To	
  compensate	
  for	
  the	
  frequency	
  response	
  contribu8ons	
  by	
  the	
  zero-­‐order	
  hold,	
  we	
  can	
  append	
  
the	
  following	
  compensated	
  reconstruc8on	
  filter	
  to	
  the	
  output	
  of	
  a	
  D/A	
  converter	
  which	
  u8lizes	
  
zero-­‐order	
  hold.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa8on	
  4.151)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  otherwise	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  "compensated	
  reconstruc8on	
  filter”	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  cascaded	
  with	
  the	
  A/D	
  converter	
  to	
  
compensate	
  for	
  the	
  frequency	
  shaping	
  inherent	
  in	
  the	
  zero-­‐order	
  hold,	
  as	
  shown	
  in	
  the	
  figure	
  
below.	
  
	
  

   
Hr(jΩ) = T

Ho(jΩ)
    =    ΩT/2

sin(ΩT/2)
ejΩT/2          for Ω < π

T

   
Hr(jΩ)

Figure	
  4.63	
  (a)	
  Frequency	
  
Response	
  of	
  zero-­‐order-­‐hold	
  
with	
  ideal	
  interpola8ng	
  filter.	
  

(b)	
  Ideal	
  compensated	
  recon-­‐	
  
structed	
  filter	
  for	
  use	
  with	
  
zero-­‐order-­‐hold	
  output.	
  	
  
	
  

(c)	
  Figure	
  4.64	
  Physical	
  configura8on	
  for	
  
D/A	
  conversion.	
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For	
  a	
  signal	
  processing	
  system	
  consis8ng	
  the	
  following	
  units:	
  
	
  -­‐	
  an8-­‐aliasing	
  filter,	
  	
  	
  	
  
	
  -­‐A/D	
  conversion	
  
	
  -­‐linear	
  filtering,	
  	
  	
  	
  
	
  -­‐D/A	
  conversion	
  using	
  zero-­‐order	
  hold,	
  	
  	
  	
  

-­‐	
  compensated	
  reconstruc8on	
  filter	
  that	
  compensates	
  for	
  zero-­‐order	
  hold,	
  	
  	
  
	
  
The	
  overall	
  frequency	
  response	
  between	
  the	
  con8nuous-­‐8me	
  and	
  the	
  con8nuous-­‐8me	
  output	
  is	
  
	
  
Recall:	
  	
  The	
  output	
  of	
  the	
  A/D	
  converter	
  includes	
  A/D	
  quan8za8on	
  noise	
  and	
  can	
  be	
  represented	
  
as	
  
	
  
where	
  x(n)	
  is	
  the	
  unquan8zed	
  signal	
  value	
  and	
  e(n)	
  is	
  the	
  A/D	
  quan8za8on	
  error.	
  
	
  	
  
To	
  be	
  shown	
  later:	
  	
  If	
  the	
  A/D	
  quan8za8on	
  error	
  is	
  a	
  white	
  noise	
  signal	
  with	
  variance	
  
	
  
	
  	
  
then	
  the	
  power	
  spectrum	
  of	
  the	
  output	
  noise	
  due	
  to	
  A/D	
  quan8za8on	
  is	
  
	
  
	
  

  Haa(jΩ)

  H(ejω) = H(ejΩT)

  Ho(jΩ)

   
Hr(jΩ)

   Heff(jΩ) = Hr(jΩ)Ho(jΩ)H(ejΩT)Haa(jΩ)

  ̂x(n) = x(n) + e(n)

  
σe

2(n) = Δ2

12

   Pe(jΩ) =  | Hr(jΩ)Ho(jΩ)H(ejΩT) |2 σe
2
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