ECE 8440 - Unit 4
Digital Processing of Analog Signals--Non-Ideal Case (See section 4.8)
Before considering the non-ideal case, recall the ideal case:
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Assumptions involved in ideal case:

- no aliasing
- no quantization errors in converting from continuous time to discrete time
- ideal impulse generator and ideal low-pass filters used in implementing D/C converter

- Realizable system used to approximate the ideal system is shown below:
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Figure 4.47 (b) Digital Processing of Analog Signals



Use of anti-aliasing filter:
Recall figure from ECE 667 text (Ludeman):
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Figure 1.29 Guard band and prefilter frequency response.

Ideally, the anti-aliasing filter should satisfy
Haa(jQ) =1 for IQl Q = $

H (io)=0 for 1ako

If anti-aliasing filter is ideal (and the D/C converter is ideal), then the overall frequency response

between the input x (t) and the output y (t)is

He(J) =HE™)  forlel < <2
H,(jQ)=0 forlQl >Q

(equation 4.118)



However, since the anti-aliasing filter is not perfectly flat the actual overall frequency response
of the above system is

H . (jQ) = H_(JQH(e*T)
Note: The closer Q_is to /T the more difficult it is to approximate an ideal anti-aliasing filter over
the desired filter's passband.

Problems with using "approximately ideal" anti-aliasing filters :

- expensive
- generally have highly non-linear phase.

Alternative approach:

Step 1. "over-sample" the input so that so that the frequencies of interest in the signal, after
sampling, satisfy

(2)<0)N<<1l3

Stated in terms of the analog input, select the sampling rate 1/T to satisfy

(Z—R—Q ]>Q
T c N

where Q is the highest frequency of interest in x_(t) and @_ is the highest frequency that the
"cheap" ("simple”) anti-aliasing filter passes. (See Figure 4.50 on next slide.) Assume that this
involves a sampling rate that is M times the Nyquist rate. That is,
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Step 2. Apply a sharp cut-off digital filter to remove high frequencies out of the range of interest.
(The digital filter can also have linear phase.)
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Step 3. Apply down-sampling by the value of M that is used in Step 1.

(d)

Figure 4.50 Use of oversampling followed by decimation in C/D
conversison.

Analog-to-Digital Conversion (practical realization of C/D conversion)
Non-ideal properties:

-conversion cannot be performed instantaneously
-therefore, a Sample/Hold circuit is typically used

-quantization error arise due to using a finite no. of bits to represent signals that have a
continuous range of possible values

If an A/D converter uses B output bits to represent a signal whose possible range of input values
is from O to X, the "step size" (resolution) of the converter is

Xm
28

=A



Similarly, if the A/D converter uses B+1 bits to represent inputs which can be positive or negative 6
with magnitude up to X, , then the step size is

2X X

_m

2B:+1 - 2B

As can be seen in the figure below, the maximum quantization error for an A/D converter with

step size A is A/Z (as long as the output is not forced into saturation in the top or bottom
levels).
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Figure 4.54 Typical quantizer for A/D conversion



Analysis of Quantization Errors due to A/D Conversion

If the perfectly represented discrete time signal is x(n) and the actual output of the A/D converter
is x(n), then the A/D quantization error e(n) is defined as

e(n) = x(n) — x(n).

Feeding the output of an A/D converter into the digital filter effectively introduces a noise
component (due to quantization) along with the desired input signal

> Quantizer >
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Figure 4.56 Additive noise model for
e[n] quantizer.

Size of quantization error:

As seen on the previous page, the quantization error range is:
~A[2 < e(n) < A2

This range of error values is valid as long as the input signal stays within the allowed range. For a
“mid-tread” A/D converter as shown on the previous slide, this condition is

(—Xm —A/2)< x(n) <(Xm —A/Z) (Refer to fig. 4.54 )

If x(n) exceeds this range, then larger, "clipping" quantization errors occur.



In order to perform a statistical evaluation of the effect of A/D quantization errors, several
assumptions are typically made:

1. e(n) is the realization of stationary random process

2. e(n) is uncorrelated with the input x(n)

3. e(n) is uncorrelated with e(m) for n # m. That is, e(n) is a "white noise" process
4. e(n) has a uniform probability density function
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Figure 4.58 Probability density
A A p Function of quantization error for a
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Figure 4.54.

These assumptions are reasonable when:

e the input signal is "sufficiently complex" (e.g., speech, music)
(example of "not sufficiently complex": a step function or a low order polynomial, such as a line)
e the input amplitude typically traverses many quantization steps from sample to sample.



The second condition (transversal of many quantization steps) becomes easier to satisfy as the number of

guantization levels is increased, as seen in the figure below.

Note the "clipping' error in part c of the figure.
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Figure 4.57 Example of quantization noise

(a) Unguantized samples of the
signal x(n)=.99kcos(m/10)

2
A -5- # (b) Quantized samples of signal in

part (a) with a 3-bit quantizer

(c) Quantization error sequence for
3-bit quantization of signal of part (a)

(d) Quantization error sequence for
8-bit quantization of signal of part (a)



Statistical representation of quantization errors: 10

If the above assumption that e(n) is uniformly distributed is valid, then the mean value of e(n) is
0, and the variance of e(n) can be found as follows:

o’ = A_/[Z eztljde _A
° -A/2 A 1

. X,
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Often the effect of quantization error is expressed in terms of db of the signal-to-noise ratio:

2

SNR = 10log, , 2=
(6

e
2

(o)
=109 32 /12

12.2%¢2
= 10Iog1o(x—2"}

In other to have an input signal to the A/D whose typical input values span the entire input range
of the A/D, but for which there little chance of clipping, we would typically adjust the input level
to satisfy:

X =40,



Then the resulting SNR becomes

2
12.225[5]
4
SNR =10log,,

XZ

=10log, [3- 228-2]
=10[log,,(3) + (2B -2)log, ,(2)]
=10[.477 + (2B-2)(.301)]
=6.02B-1.25db
~6B-1.25db

Therefore, each additional bit in an A/D output contributes approximately 6 db to the SNR
performance.

Example:

If 90 - 96 db of SNR is required (as in high quality music recording), then the required no. of bits
in the A/D output can be calculated as

B=29%%£§=152 (for 90 db SNR)

or B:9§%%£§:162 (for 96 db SNR)



D/A Conversion 12
Recall that the ideal D/C conversion process can be represented in the time domain as

- sin[E(t -nT)]

x (t)= Y x(n) nT (equation 4.140)
n== ?(t -nT)

(This is the "reconstruction formula" which is a by-product of developing the Sampling Theorem.)

Mathematically, this is equivalent to generating a train of analog impulse scaled by x(n), then
feeding the pulse train into an ideal low-pass filter, as shown below and derived on the next
slide.

Ideal reconstruction system
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Figure 4.7(a) Block diagram of an deal (b) Frequency response of an ideal

bandlimited signal reconstruction system. reconstruction filter.



This pulse train can be represented as

x_(t) = Y, x(n)d(t - nT). (equation 4.22)
The imnbﬁlse response of an ideal low-pass filter having cutoff equal to /T and with gain of T is
h.(t) = sin(nt / T) (equation 4.24)
r nt/T
(1)
1
Figure 4.7 (c) Impulse response of an
~_ L\ SN L Ideal reconstruction filter.
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The response of this low-pass filter to the input x(t) is

x(0)= [ x,(Dh (t- D)

= [ 3 x(M3(z—nTh (t - D)de

—oo N=—00

= 3 x(n) [ 8(z—nTh,(t - 7)dr

N=—co

- i x(n)h (t-nT) (equivalent to equation 4.25)

N=—oc0



To obtain a frequency domain description of the ideal reconstruction process, take the
continuous time Fourier Transform of of the output x (t):

X,(j) = [ x, (e dt

—oo \_N=—0c0

_ j(Z x(nh,(t - nT)]e‘j‘“dt

= 3 x(n) [ h (t—nT)e dt

N=—c

If we let 1 =t-nT, the above can be written as

= 3 x(m) | h (t)e Ry

N=—c

= 3 x(ne " [ h (v)e dr

N=—cx

= Y x(ne ™ H (j)

N=—c

= X(e")H.(j)

So X (j&) = X(e*)H,(jQ)

where H (jo) is an ideal low-pass filter with gain = T, as was shown previously in figure 4.7.
Since o = QT, the above equation can be written as

X (j) = X(e*)H (jQ) (equation 4.28)
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D/A converters
A D/A converter is a practical realization (and approximation) of the ideal D/C converter.

A typical D/A converter uses a zero-order hold to preserve the most recent analog conversion
value, as shown in the figure below.

Zero-order
hold —_—
x(n) ' X, (1)




The operation of a zero-order hold can be represented mathematically as 16

oo

X (t)= 3 x(n)h_(t—nT)

N=—co

where

h(t)=1 0<t<T
and

h (t)=0, otherwise

It is useful to note that the generation of x_(t) from x(n) can also be represented by a convolution
of a weighted impulse train with h_(t):

oo

x_(t)=h (1)* Y x(n)d(t-nT)

N=—c

= Y x(nh,_(t—nT).

N=—c

To view the effect of the zero-order hold in the frequency domain, take the Fourier Transform of
h,(t):

o T
H (jQ) = [h (t)e ™ dt = [1e*dt
—oo 0

[e"m—ﬂ B [1—e‘j‘”}

j jQ

e—th T

joT joT
jQT jQ
- e’JT = Esin(%‘-}ejz (equation 4.150)
Q



To compensate for the frequency response contributions by the zero-order hold, we can append 17

the following compensated reconstruction filter to the output of a D/A converter which utilizes
zero-order hold.

H (jQ) = T = ,m—/zejm/2 foro < & (equation 4.151)
r Ho(jQ) sin(QT/2) T
=0 otherwise
= T Ideal interpolating II:?,(jQ)[ Figure 4.63 (a) F"equency
Zero-order / \/ filter H, (j(2) Response of zero-order-hold
PO ! with ideal interpolating filter.

[Hy(GO)I
(b) Ideal compensated recon-
‘ structed filter for use with

B zero-order-hold output.
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The "compensated reconstruction filter” Flr(jQ)is cascaded with the A/D converter to

compensate for the frequency shaping inherent in the zero-order hold, as shown in the figure

below.
Compensated (c) Figure 4.64 Physical configuration for
D/A _ | reconstruction D/A conversion.
2] converter | (5 filter '—2';)'
i H,(Q) '

1

T



For a signal processing system consisting the following units: 18
- anti-aliasing filter, H,,(J?)
-A/D conversion
-linear filtering, H(e*) = H(e™")
-D/A conversion using zero-order hold, H, (i)
- compensated reconstruction filter that compensates for zero-order hold, H.(j)

The overall frequency response between the continuous-time and the continuous-time output is
H, . (jQ) = H (JOH_(JQH(e*)H_ (jo)
Recall: The output of the A/D converter includes A/D quantization noise and can be represented

as
x(n) = x(n) + e(n)

where x(n) is the unquantized signal value and e(n) is the A/D quantization error.

To be shown later: If the A/D quantization error is a white noise signal with variance

2
HORES

then the power spectrum of the output noise due to A/D quantization is

P.(Q) = 1 (QH,(JRH(E) F o?



