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Defini&on	
  of	
  a	
  random	
  signal	
  and	
  a	
  discrete-­‐&me	
  random	
  process	
  	
  (See	
  Sec&on	
  2.10	
  and	
  
Appendix	
  A.1-­‐A.4)	
  
	
  	
  
•	
  Each	
  individual	
  sample	
  of	
  a	
  random	
  signal	
  x(n),	
  i.e.,	
  the	
  value	
  of	
  x(n)	
  for	
  some	
  n,	
  is	
  assumed	
  to	
  
be	
  an	
  outcome	
  of	
  some	
  underlying	
  random	
  variable	
  xn	
  .	
  	
  	
  
	
  
•	
  The	
  en&re	
  signal	
  is	
  represented	
  by	
  a	
  set	
  of	
  such	
  random	
  variables	
  (one	
  for	
  each	
  &me	
  index,	
  )	
  
and	
  is	
  called	
  a	
  random	
  process.	
  	
  	
  
	
  	
  
•	
  Formally,	
  we	
  say	
  that	
  a	
  random	
  process	
  is	
  an	
  indexed	
  family	
  of	
  random	
  variables	
  {xn}	
  
characterized	
  by	
  the	
  set	
  of	
  individual	
  and	
  joint	
  probability	
  distribu&ons	
  of	
  all	
  the	
  random	
  
variables	
  the	
  random	
  process	
  consists	
  of.	
  	
  	
  
	
  
•	
  A	
  par&cular	
  sequence	
  of	
  signal	
  values	
  x(n)	
  is	
  oMen	
  considered	
  to	
  be	
  one	
  of	
  an	
  ensemble	
  of	
  
sample	
  sequences	
  associated	
  with	
  an	
  underlying	
  random	
  process.	
  
	
  	
  
•	
  An	
  individual	
  random	
  variable	
  xn	
  is	
  completely	
  characterized	
  by	
  its	
  probability	
  distribu&on	
  
func&on	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Probability	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.1)	
  
	
  
  
Pxn

(xn,n) =   [xn ≤ xn]
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If	
  xn	
  takes	
  on	
  a	
  con&nuous	
  range	
  of	
  values,	
  then	
  it	
  can	
  be	
  specified	
  by	
  its	
  probability	
  density	
  
func&on	
  
	
  	
  
	
  
The	
  interdependence	
  of	
  two	
  random	
  variables	
  xn	
  and	
  xm	
  	
  of	
  a	
  random	
  process	
  can	
  be	
  described	
  
by	
  the	
  joint	
  probability	
  distribu&on	
  func&on	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Probability	
  	
  
and	
  by	
  the	
  joint	
  probability	
  density	
  func&on	
  
	
  
	
  
	
  
Sta&s&cal	
  Independence	
  
Two	
  random	
  variables	
  xn	
  and	
  xm	
  are	
  sta&s&cally	
  independent	
  if	
  knowledge	
  of	
  the	
  value	
  of	
  one	
  
does	
  not	
  affect	
  the	
  probability	
  density	
  of	
  the	
  other.	
  	
  If	
  xn	
  and	
  xm	
  are	
  sta&s&cally	
  independent,	
  
then	
  the	
  joint	
  probability	
  distribu&on	
  func&on	
  of	
  xn	
  and	
  xm	
  can	
  be	
  expressed	
  as:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.6)	
  
Likewise,	
  
	
  
(The	
  above	
  proper&es	
  extend	
  to	
  an	
  arbitrary	
  number	
  of	
  sta&s&cally	
  independent	
  random	
  
variables.)	
  
	
  
	
  
	
  

  
pxn

(xn,n) = ∂
∂xn

Pxn
(xn,n)( ).

  
Pxn,xm

(xn,n,xm,m) =   [xn ≤ xnand xm ≤ xm]

  
pxn,xm

(xn,n,xm,m) = ∂2

∂xn ∂xm

Pxn,xm
(xn,n,xm,m)( ).

Pxn,xm
(xn,n,xm,m) = Pxn

(xn,n) ⋅Pxm
(xm,m)          m ≠ n

  
pxn,xm

(xn,n,xm,m) = pxn
(xn,n) ⋅ pxm

(xm,m)
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Sta&onary	
  Random	
  Processes	
  
If	
  all	
  the	
  individual	
  and	
  joint	
  probability	
  distribu&ons	
  for	
  the	
  random	
  variables	
  that	
  make	
  up	
  a	
  
random	
  process	
  are	
  independent	
  of	
  a	
  shiM	
  of	
  the	
  &me	
  origin,	
  the	
  random	
  process	
  is	
  said	
  to	
  be	
  
sta&onary.	
  	
  For	
  example,	
  if	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  are	
  components	
  of	
  a	
  sta&onary	
  random	
  process,	
  then	
  their	
  
joint	
  probability	
  distribu&on	
  must	
  sa&sfy	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  all	
  k	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.7)	
  	
  
Correspondingly,	
  the	
  following	
  must	
  be	
  sa&sfied:	
  
	
  	
  	
  
	
  
Important	
  Considera&ons	
  	
  
•	
  It	
  is	
  not	
  generally	
  useful	
  to	
  apply	
  the	
  DTFT	
  directly	
  to	
  a	
  random	
  signal.	
  
	
  •	
  However,	
  it	
  is	
  oMen	
  useful	
  to	
  apply	
  the	
  DTFT	
  to	
  averages	
  such	
  as	
  the	
  autocorrela&on	
  sequence	
  
or	
  the	
  autocovariance	
  sequence	
  associated	
  with	
  a	
  random	
  signal.	
  	
  
	
  	
  	
  
Important	
  Averages	
  
The	
  average	
  (or	
  mean	
  or	
  expected	
  value)	
  of	
  a	
  random	
  variable	
  	
  	
  	
  	
  is	
  defined	
  as	
  

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.8)	
  	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  denotes	
  the	
  mathema&cal	
  expecta&on	
  operator.	
  	
  In	
  general,	
  the	
  mean	
  may	
  be	
  
dependent	
  on	
  n.	
  	
  	
  
	
  

  xn   xm

 
Pxn+k,xm+k

(xn+k,n + k,xm+k,m +k) = Pxn,xm
(xn,n,xm,m)

 
pxn+k,xm+k

(xn+k,n + k,xm+k,m +k) = pxn,xm
(xn,n,xm,m)

  
mxn

= E{xn} = x
−∞

∞

∫ ⋅  pxn
(x,n) dx

  xn

  E{xn}
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If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  a	
  single	
  valued	
  func&on	
  of	
  a	
  random	
  variable	
  xn	
  then	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  also	
  a	
  random	
  variable.	
  	
  
The	
  set	
  of	
  random	
  variables	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  is	
  a	
  new	
  random	
  process.	
  	
  
	
  
The	
  average	
  of	
  the	
  new	
  random	
  variable	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  given	
  by	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.9) 	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
  	
  
If	
  the	
  random	
  variable	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  discrete	
  (if	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  has	
  quan&zed	
  values),	
  then	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.10) 	
  	
  
	
  
The	
  expected	
  value	
  of	
  a	
  func&on	
  of	
  two	
  random	
  variables	
  xn	
  and	
  yn	
  is	
  defined	
  as	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.11)	
  
	
  
Uncorrelated	
  Random	
  Variables	
  
Two	
  random	
  variables	
  xn	
  and	
  ym	
  are	
  uncorrelated	
  (linearly	
  independent)	
  if	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.12)	
  
	
  
•	
  Sta&s&cally	
  independent	
  random	
  variables	
  are	
  also	
  uncorrelated.	
  
•	
  The	
  converse	
  of	
  the	
  above	
  statement	
  is	
  not	
  true:	
  	
  uncorrelated	
  random	
  variables	
  are	
  not	
  
necessarily	
  sta&s&cally	
  independent.	
  
	
  
	
  

  g(xn) g(xn)
g(xn){ }  −∞ < n < ∞

  g(xn)

  
E{g(xn)} = g(x)

-∞

∞

∫  pxn
(x,n) dx

  g(xn)  g(xn)

  
E{g(xn)} = g(x) p̂xn

(x,n)
x
∑

  
E(g(xn, ym)) = g(x,y)

-∞

∞

∫  pxn,ym
(x,n,y,m) dxdy

−∞

∞

∫

  E(xnym) = E(xn)E(ym)
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The	
  variance	
  of	
  a	
  random	
  variable	
  xn	
  is	
  defined	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.15)	
  
If	
  the	
  random	
  variable	
  xn	
  is	
  real-­‐valued,	
  this	
  becomes	
  
	
  	
  
Note	
  that	
  the	
  right	
  side	
  of	
  above	
  expression	
  can	
  be	
  wri`en	
  as	
  
	
  
	
  
	
  
	
  
Note:	
  	
  For	
  the	
  more	
  general	
  case	
  where	
  xn	
  is	
  complex-­‐valued,	
  the	
  expression	
  for	
  the	
  variance	
  
becomes	
  

	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.16)	
  
The	
  autocorrela&on	
  sequence	
  of	
  the	
  random	
  process	
  {xn}	
  is	
  defined	
  as	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.17)	
  
	
  
The	
  autocovariance	
  sequence	
  of	
  the	
  random	
  process	
  {xn}	
  is	
  defined	
  as	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.18)	
  
	
  
	
  
	
  
	
  
	
  

var[xn] = σxn
2 = E | (xn −mxn

) |2{ }
var[xn] = σxn

2 = E (xn −mxn
)2{ }

   
E (xn −mxn

)2{ } = E (xn
2 - 2xnmxn

+mxn

2){ }
   
= E(xn

2) - 2mxn
E(xn) +mxn

2

  
= E(xn

2) −mxn

2

var[xn] = σxn

2 = E(| xn |2) − | mxn
|2

  
φxx(n,m) = E xnxm

*{ } = xnxm
*

-∞

∞

∫ pxn,xm
(xn,n,xm,m)dxn dxm

−∞

∞

∫

  
γ xx(n,m) = E (xn - mxn

)(xm - mxm
) *{ }

  
= E xnxm

* −mxn
xm

* −mxm

* xn +mxn
mxm

*{ }
  
= E(xnxm

* ) −mxn
E(xm

* ) −mxm

* E(xn) +mxn
mxm

*

  
= E(xnxm

* ) −mxn
mxm

*

 
= φxx(n,m) - mxn

mxm

*
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The	
  cross-­‐correla&on	
  sequence	
  associated	
  with	
  the	
  random	
  processes	
  {xn}	
  and	
  {ym}	
  is	
  defined	
  as	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.20)	
  
	
  
The	
  cross-­‐	
  covariance	
  sequence	
  is	
  defined	
  as	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
Wide-­‐Sense	
  Sta&onary	
  Random	
  Processes	
  
Random	
  variables	
  which	
  are	
  not	
  sta&onary,	
  but	
  which	
  do	
  sa&sfy	
  some	
  less	
  restric&ve	
  condi&ons,	
  
are	
  said	
  to	
  be	
  wide-­‐sense	
  sta&onary:	
  	
  
In	
  order	
  to	
  be	
  wide-­‐sense	
  sta&onary	
  the	
  mean	
  and	
  variance	
  of	
  the	
  random	
  process	
  must	
  be	
  
independent	
  of	
  &me,	
  and	
  the	
  autocorrela&on	
  sequence	
  must	
  be	
  dependent	
  only	
  the	
  &me	
  
difference	
  between	
  the	
  random	
  variables	
  involved.	
  	
  This	
  is	
  formally	
  stated	
  as:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (independent	
  of	
  n) 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.22)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (independent	
  of	
  n) 	
   	
   	
   	
  	
  	
  	
  (equa&on	
  A.23)	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (dependent	
  on	
  m,	
  but	
  not	
  n)	
  
	
  
	
  

  φxy(n,m) = E(xn,ym
* )

  
= xnym

*

−∞

∞

∫ pxn,ym
(xn,n,ym,m)dxn dym

−∞

∞

∫

  
γ xy(n,m) = E (xn −mxn

)(ym −mym
) *{ }

  
= E xnym

* −mxn
ym

* −mym

* xn +mxn
mym

*{ }

 
= φxy(n,m) −mxn

mym

*

mx = E(xn)

   σ x

2 = E (xn −mx)
2{ }

   φxx(n +m,n) = φxx(m) = E(xn+mxn
*) 	
  	
  	
  (equa&on	
  A.24)	
  

  
= E(xnym

* ) −mxn
E(ym

* ) −mym

* E(xn) +mxn
mym

*

	
  	
  	
  (equa&on	
  A.21)	
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Time	
  averages	
  
The	
  &me	
  average	
  of	
  a	
  random	
  process	
  is	
  defined	
  as	
  	
  

	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.25)	
  
	
  
The	
  &me	
  autocorrela&on	
  sequence	
  is	
  defined	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.26)	
  
	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  defined	
  as	
  func&ons	
  of	
  random	
  variables,	
  they	
  are	
  random	
  variables	
  
themselves.	
  Note	
  that	
  if	
  the	
  random	
  process	
  is	
  at	
  least	
  wide-­‐sense	
  sta&onary,	
  then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  
If	
  the	
  random	
  process	
  	
  	
  	
  	
  	
  is	
  also	
  ergodic,	
  then	
  it	
  is	
  also	
  true	
  that	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  
Therefore,	
  for	
  this	
  case,	
  	
  	
  
	
  
	
  
A	
  variance	
  of	
  0	
  means	
  that	
  the	
  &me	
  average	
  associated	
  with	
  almost	
  all	
  sample	
  sequences	
  are	
  
equal	
  to	
  the	
  same	
  constant,	
  which	
  is	
  the	
  &me-­‐independent	
  average,	
  	
  	
  	
  	
  	
  .	
  	
  Therefore,	
  we	
  can	
  
express	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  the	
  &me	
  average	
  for	
  a	
  single	
  sample	
  sequence.	
  	
  That	
  is,	
  
	
  
	
  
	
  

  
〈xn 〉 = lim

L→∞

1
2L +1

xn
n = - L

L

∑

  
〈xn+m,xn

* 〉 = lim
L→∞

1
2L +1

xn+m
n = - L

L

∑ xn
*

 〈xn 〉   〈xn+m,xn
* 〉

  E{〈xn 〉} = E{xn} = mx   E{〈xn+m,xn
* 〉} = E{xn+m,xn

*} = φxx(m)

 xn

  Var{〈xn 〉} = 0   Var{〈xn+m,xn
* 〉} = 0.

  〈xn 〉 = E{xn} = mx

 mx

 mx

  
〈xn 〉 = lim

L→∞

1
2L +1

x[n]
n = - L

L

∑ = E{xn} = mx 	
  (equa&on	
  A.27)	
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Likewise,	
  assuming	
  the	
  same	
  proper&es	
  (wide	
  sense	
  sta&onary	
  and	
  ergodic),	
  we	
  can	
  express	
  	
  	
  	
  	
  	
  	
  	
  
as	
  the	
  following	
  &me	
  average	
  associated	
  with	
  a	
  single	
  sample	
  sequence:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.28)	
  
In	
  general,	
  a	
  random	
  process	
  for	
  which	
  &me	
  averages	
  are	
  equal	
  to	
  ensemble	
  averages	
  is	
  called	
  an	
  
ergodic	
  process.	
  
In	
  prac&ce,	
  we	
  typically	
  assume	
  that	
  a	
  given	
  sequence	
  is	
  a	
  sample	
  sequence	
  of	
  a	
  sta&onary	
  and	
  
ergodic	
  random	
  process	
  so	
  that	
  averages	
  can	
  be	
  computed	
  from	
  a	
  single	
  sample	
  sequence.	
  	
  For	
  
example,	
  we	
  typically	
  es&mate	
  the	
  mean,	
  variance,	
  and	
  autocorrela&on	
  using:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (called	
  the	
  sample	
  mean)	
   	
   	
   	
  	
  	
  	
  	
  	
  (equa&on	
  A.29)	
  
	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (called	
  the	
  sample	
  variance)	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.30)	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (“sample	
  autocorrela&on”)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  A.31) 	
   	
  	
  
	
  
Response	
  of	
  LTI	
  Systems	
  to	
  Random	
  Inputs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (see	
  sec&on	
  2.10)	
  	
  
Consider	
  a	
  LTI	
  system	
  with	
  a	
  input	
  x(n)	
  which	
  is	
  a	
  real-­‐valued	
  sequence	
  which	
  is	
  a	
  sample	
  
sequence	
  of	
  a	
  wide-­‐sense	
  sta&onary	
  discrete-­‐&me	
  random	
  process.	
  	
  The	
  output	
  y(n)	
  can	
  be	
  also	
  
be	
  considered	
  the	
  sample	
  sequence	
  of	
  a	
  random	
  process	
  and	
  is	
  related	
  to	
  the	
  input	
  by	
  
	
  
	
  
The	
  mean	
  of	
  the	
  output	
  process	
  is	
  
	
  

 φxx(m)

 
〈xn+m,xn

* 〉 = lim
L→∞

1
2L +1

x[n +m]
n = - L

L

∑ x∗[n] = E{xn+m,xn
*} = φxx(m)

   

mx = 1
L

x(n)
n=0

L−1

∑

  
σ̂x

2 = 1
L

| x(n)
n=0

L-1

∑ - m̂x |2

 
〈x[n +m]x*[n]〉L = 1

L
x(n

n=0

L-1

∑ +m)x*(n)

 
y(n) = h(n - k)x(k) =

k=-∞

∞

∑ h(k)x(n - k)
k=-∞

∞

∑

  
my(n) = E{y(n)} = h(k)E{x(n - k)

k=-∞

∞

∑ }
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Since	
  we	
  assumed	
  that	
  the	
  input	
  is	
  wide-­‐sense	
  sta&onary,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (independent	
  of	
  n	
  and	
  k)	
  
Therefore,	
  

	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  2.184)	
  
	
  
Since	
  the	
  right-­‐hand	
  side	
  is	
  independent	
  of	
  n,	
  so	
  is	
  the	
  leM	
  side,	
  and	
  we	
  can	
  write	
  the	
  above	
  
equa&on	
  as:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
   	
  	
  	
  	
  	
  
	
  
Since	
  the	
  above	
  summa&on	
  is	
  the	
  same	
  as	
  the	
  summa&on	
  used	
  in	
  the	
  DTFT	
  of	
  h(n)	
  for	
  the	
  case	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  we	
  can	
  also	
  re-­‐write	
  the	
  above	
  as	
  

	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  2.185)	
  
The	
  autocorrela&on	
  of	
  the	
  output	
  process	
  is	
  
	
  
	
  
	
  
	
  
	
  
Since	
  the	
  input	
  was	
  assumed	
  to	
  be	
  wide-­‐sense	
  sta&onary,	
  
	
  

  E{x(n − k)} = mx

  
my(n) = mx h(k)

k=-∞

∞

∑

  
my = mx h(k)

k=-∞

∞

∑

ω = 0

 my = mxH(ej0)

  φyy(n,n + m) = E y(n)y(n + m){ }

  
= E h(k)

r=-∞

∞

∑
k=-∞

∞

∑ x(n − k)h(r)x(n + m − r)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

   
= h(k) h(r)E x(n − k)x(n + m − r){ }

r=-∞

∞

∑
k=-∞

∞

∑

  E x(n − k)x(n + m − r){ } = φxx(m + k − r)
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Therefore,	
  
	
  	
  
Since	
  the	
  right	
  hand	
  side	
  is	
  independent	
  of	
  n,	
  the	
  system	
  output	
  y(n)	
  is	
  also	
  independent	
  of	
  n.	
  	
  
We	
  can	
  therefore	
  write	
  
	
  
	
  
Now	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  rewrite	
  the	
  above	
  summa&on	
  can	
  be	
  wri`en	
  as	
  
	
  	
  
	
  
Now	
  define	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  2.188)	
  
We	
  can	
  now	
  write	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  2.187)	
  
The	
  sequence	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  an	
  example	
  of	
  a	
  "determinis&c"	
  autocorrela&on	
  sequence.	
  	
  (Since	
  it	
  is	
  the	
  
autocorrela&on	
  of	
  a	
  non-­‐random	
  signal.)	
  
	
  
Since	
  the	
  above	
  equa&on	
  is	
  a	
  convolu&on	
  in	
  the	
  &me	
  domain,	
  the	
  frequency	
  domain	
  version	
  this	
  
rela&on	
  is	
  

	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  2.189)	
  
	
  
	
  

  
φyy(n,n + m) = h(k) h(r) φxx(m + k − r)

r=-∞

∞

∑
k=-∞

∞

∑

  
φyy(m) = h(k) h(r) φxx(m + k − r)

r=-∞

∞

∑
k=-∞

∞

∑

   = r − k

   
φyy(m) = φxx(m − ) h(k) h(+k)

k=-∞

∞

∑
=−∞

∞

∑

   
chh() = h(k) h( + k)

k=−∞

∞

∑

  φyy(m)

    
φyy(m) = φxx(m − )chh()

l=-∞

∞

∑
   chh()

  Φyy(e
jω) = Chh(e

jω)Φxx(e
jω)
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where	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  DTFT	
  of	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  DTFT	
  of	
  	
  
	
  and	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  DTFT	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
	
  
Using	
  equa&on	
  (2.188)	
  to	
  represent	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  we	
  can	
  express	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  	
  
	
  
	
  
	
  
	
  
Now	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
Therefore,	
  equa&on	
  2.189	
  can	
  be	
  wri`en	
  as	
  
	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  2.190)	
  
	
  

  Φxx(e
jω)   φxx(m)

  Φyy(e
jω)   φyy(m)

  Chh(e
jω)    chh()

   chh()   Chh(e
jω)

    
Chh(e

jω) = chh()e
− jω

=-∞

∞

∑

   
Chh(e

jω) = h(k) h(+k)
k=−∞

∞

∑ e− jω

=−∞

∞

∑

   
= h(k) h(+k)

=-∞

∞

∑ e− jω

k=-∞

∞

∑

  m =  + k

  
Chh(e

jω) = h(k) h(m)
m=-∞

∞

∑ e− jω(m−k)

k=-∞

∞

∑

  
= h(k)ejωk h(m)

m=-∞

∞

∑ e− jωm

k=-∞

∞

∑

  = H(e− jω)H(ejω) = H*(ejω)H(ejω) =  | H(ejω) |2

  Φyy(e
jω) =| H(ejω) |2 Φxx(e

jω)
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Note	
  that	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  total	
  average	
  power	
  of	
  the	
  signal	
  y(n)	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  called	
  the	
  power	
  density	
  spectrum	
  of	
  the	
  random	
  signal	
  y(n).	
  (It	
  describes	
  the	
  
contribu&ons	
  to	
  the	
  total	
  average	
  power	
  in	
  	
  y(n)	
  from	
  its	
  various	
  component	
  frequencies.)	
  	
  
Note:	
  	
  “total	
  average	
  power”	
  is	
  some&mes	
  called	
  “total	
  power”	
  or	
  just	
  “power.”	
  
	
  
Example	
  2.26	
  	
  	
  White	
  Noise	
  
If	
  x(n)	
  is	
  a	
  white	
  noise	
  signal	
  then	
  its	
  autocorrela&on	
  is	
  given	
  by	
  
	
  
For	
  this	
  zero-­‐mean	
  case,	
  the	
  corresponding	
  power	
  density	
  spectrum	
  is	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  constant,	
  for	
  all	
  	
  	
  	
  	
  	
  	
  
	
  
If	
  a	
  white	
  noise	
  signal	
  is	
  applied	
  as	
  the	
  input	
  to	
  a	
  linear	
  &me	
  invariant	
  system	
  having	
  unit	
  sample	
  
response	
  h(n),	
  the	
  power	
  density	
  spectrum	
  of	
  the	
  output	
  y(n)	
  is	
  
	
  
	
  
For	
  example,	
  if	
  a	
  white	
  noise	
  signal	
  is	
  applied	
  to	
  a	
  system	
  having	
  frequency	
  response	
  of	
  
	
  
then:	
  

  
E{y2(n)} = φyy(0) = 1

2π Φyy(e
jω)

−π

π

∫  dω

  Φyy(e
jω)

φxx(m) = E{x2(n)}δ(m)

  
Φxx(e

jω) = φxx(m)e− jωm = σx
2

m=−∞

∞

∑ ω

  Φyy(e
jω) =  | H(ejω) |2 Φxx(e

jω)

  
H(ejω) = 1

1− ae− jω

  =  | H(ejω) |2 σx
2

  
Φyy(e

jω) = 1
1− ae− jω

2

σx
2     =    

σx
2

1+ a2 − 2acosω
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.	
  	
  If	
  x(n)	
  has	
  zero-­‐mean,	
  then	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  φxx(m) = σx
2δ(m)



The	
  cross-­‐correla&on	
  between	
  input	
  and	
  output	
  of	
  a	
  LTI	
  system	
  whose	
  input	
  is	
  a	
  realiza&on	
  of	
  a	
  
random	
  process	
  is	
  given	
  by	
  
	
  	
  
	
  	
  
	
  
	
  
	
  
If	
  x(n)	
  is	
  wide-­‐sense	
  sta&onary,	
  then	
  this	
  can	
  be	
  wri`en	
  as	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  2.195)	
  
	
  
When	
  the	
  input	
  is	
  a	
  white	
  noise	
  signal	
  for	
  which	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  cross-­‐correla&on	
  between	
  
input	
  and	
  output	
  is:	
  

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  2.197)	
  
	
  

  φxy(m) = E{x(n)y(n + m)}

  
= E x(n) h(k)x(n + m − k)

k=−∞

∞

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

  
= h(k)E x(n)x(n + m − k){ }

k=−∞

∞

∑

  
φxy(m) = h(k)φxx(m − k)

k=−∞

∞

∑

  φxx(m) = σx
2δ(m)

  
φxy(m) = h(k)σx

2δ(m − k)
k=−∞

∞

∑ = σx
2  h(m)
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The	
  frequency	
  domain	
  version	
  of	
  equa&on	
  2.195	
  is	
  
	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa&on	
  2.196)	
  

	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  called	
  the	
  cross	
  power	
  spectrum	
  of	
  the	
  system	
  input	
  and	
  the	
  system	
  output.	
  
As	
  we	
  have	
  seen,	
  the	
  frequency	
  domain	
  version	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (white	
  noise	
  case)	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  all	
  	
  	
  	
  	
  	
  	
  	
  
Therefore,	
  for	
  the	
  case	
  of	
  a	
  zero-­‐mean	
  white	
  noise	
  input,	
  the	
  cross	
  power	
  spectrum	
  of	
  the	
  input	
  
and	
  output	
  is	
  

	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  (equa&on	
  2.199)	
  	
  
	
  

  Φxy(e
jω) = H(ejω)Φxx(e

jω)

  Φxy(e
jω)

  φxx(m) = σx
2δ(m)

  Φxx(e
jω) = σx

2 ω

  Φxy(e
jω) = H(ejω)σx

2
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