ECE 8440 - Unit 6
Over-Sampling with A/D Conversion (see section 4.9)

Assume that the analog signal x,(t) is wide-sense stationary and that it is band-limited to Q=
That is,

e, >(2)=0 lazQq. (equation 4.158)
Consider the follow steps of processing this signal:

1. Sample x,(t) at a sampling rate that satisfies

l>M&.
T T

Q
Note that ?Nis the Nyquist rate, and M is the over-sampling ratio. Call the sampled signal x(n).
2. Quantize the "over-sampled" signal x(n) to get )’i(n)

3. Apply anideal low-pass digital filter with cutoff of @_= ﬁ
4. Down-sample the filter output by a factor of M.
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Figure 4.65 Oversampled A/D conversion with simple quantization and down-
Sampling.



The quantization error can be treated as a source of additive white noise. 2
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Figure 4.66 System of Figure 4.65 with quantizer replaced by linear noise model

Also note that the output of the above system consists of one component, x4,(n), due to x(n) and
one component, x4 (n), due to e(n).

Goal: Determine ratio of signal power E[Xﬁa(n)} to the quantization noise power E[Xje(n)}, asa
function of the quantization step size A and the over-sampling ratio M.

Effect of system of Figure 4.66 on the "signal component" x(n):
Note that
E[x(n + m)x(n)} = E[xa((n + m)T)xa(nT)J

Since we assume that x,(t) is wide-sense stationary, neither of the above expression is dependent
on n, so we can write the above expression as:

o, (m)=¢  (mT) (equation 4.160)

1
Note that ¢,,(M) can be considered to be a sampled version of ¢,, (t)with a sampling rate of T~



Also, note that 3
E[x?(n)] = E[x2(nT)].

Along with the assumption that x,(t) is wide-sense stationary, this indicates that the power in the
original analog signal and the power in the sampled signal are the same, i.e.,

E[x*(n)] = E[X:(t)].
Note that E[x?(n)] and E[x Z(t)] are related to their corresponding power spectral densities via

Elx;(t)] —jcbxx (j2) dQ—— j o, (jQ) do
and
E[x*(n)]==— j ®_(e*) do = 21 an @ _(e*) do.

-n/M

The correspondlng frequency domain expression of the relationship between ¢, (m) and ¢Xaxa(t) is
(from the development of the Sampling Theorem):

o, (") - % o J[Q_ ZTLkH (equation 4.162)
Ke—oo a*a

Since we assumed that the input was band-limited to @, and an over-sampling ratio of M was
used, we can write:

o (e =tao |2 ol < 7/M
XX T Xaxa T

=0, /M < lol < =.
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Figure 4.67 lllustration of frequency and amplitude scaling between @, (jQ) and @ (jQ).

The output of the down-sampler is x_(n) = x(nM)
Note that

E[Xa(n)xe(n + m)] = E[x(aM)x((n + m)M)]

= E[x(nM)x(nM + mM) ]

= ¢ _(mM)

since x,(t), and therefore x(n), was assumed to be wide-sense stationary.

Therefore, we can write

¢Xdaxda(m) = ¢ _(mM)

The frequency domain representation of this down-sampling relationship is

) 1 M-1
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(Dxaxa(j‘Q') q)xx(ejw)
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Figure 4.67 lllustration of frequency and amplitude scaling between

Since x(n) is bandlimited to /M, there is no aliasing due to down-sampling, and one period of
® (e”) can be expressed as

XgaXda

o (ejm):%q,xx (e*™), ol <.

Xdaxda

We can now determine the power of x,,(n) as follows:

T

ELx2(n)] = é Jo. (@) do

o _(e*™) do.
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If we let o'=w/M, the above integral can be written as 6
n/M
- L 1o (e*) Mdo'
275 —1:/MM “
-I /M

=5- [ @ (e*)do' = E[*(n)].

This shows that the power of the output x,,(n) of the system of Figure 4.56 (the part of the
output due to x(n)) is the same the power in x(n), which has already been shown to have the
same power as the system input x,(t).

Quantization noise component of system output

As before, assume that the injected quantization noise e(n) is a wide-sense stationary, white
noise process with zero mean and the following variance:

2 A
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As already shown, the corresponding autocorrelation is

¢ . (m) =02 8(m)

and the power density spectrum is 1 OyM| (el
. A? T -, =
o 2 _ T . .
q)ee(el ) = 02 , ol <z where 6, = E i D, (/) =2 Figure 4.68 Power spectral
_________ J __»_/,*___ density and quantization noise
' ] with an oversampling factor on M.




Referring to equation 2.190, the contribution to the power density spectrum of the output of the /
low-pass filter (with cutoff o_=n/M andgain = 1), due to an input of e(n), is

(e*)=_(e*)H(Ee")P?
=d_(e*).1=0c? for |w[<m/m

Ipf e

=0 for n/M <|o|<x.

The low-pass filter in Figure 4.66 removes frequency components of e(n) in the range

(0, =7/ M)< ‘03‘ < T . The noise power at the output of this low-pass filter is:
n/M 2

EleX(n)} = —— | of do=—e|Z8|_ e
o ) zn MM

Finally, down-sampling by a factor of M applies a 1/M magnitude scale factor to @, (e*) and
increases the upper frequency from /M to m, as shown in Figure 4.60.
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Figure 4.69 Power spectral density of signal and quantization noise after down-sampling



8

As we saw for the case of the signal component x(n), passing a signal through a down-sampler
does not change the power of the input signal. Therefore, the contribution of e(n) to the power
of the system output is the same as the contribution of e(n) to the power of the output of the

low-pass filter, which was shown to be ;; :

We can confirm this by calculating E{x},} directly by evaluating the IDTFT of ‘Dxdexde(ej"’) for the

m = 0 case:
1 %o’ o> A’
E{x?l=— | ¢t do=—¢= . 1
{x} 2w M o - DM (equation 4.169)

Investigate the trade-off between M andA.
Recall that Ais related to the B (the number of quantizer output bits used to represent the
positive range of the input) and X, (the input can range from - X_to X ) is

Xm

A=2—B.

Therefore, the output power of noise due to quantization can be expressed as

s (XY
Eix}= 12M( 2% ) '
For fixed quantizer parameters (X, and B), the noise power can be decreased by increasing the
over-sampling factor M.

Since the power output due to the "good signal" is independent of M, decreasing E{xf,e} also
increases the signal-to-quantization-noise ratio (SNR).



We can solve for the number of quantizer bits needed to achieve a target value Py, = £{:2 ]
as follows:

12MP,2*° = X°

228 an

T 12MP,

2B=log, X, —log,12MP,,
=2log, X, —log,12MP,,
1 1 1
B=log, X, —Elog212—510g2M—510g2 P,..

If the oversampling ratio M is replaced by M'=KM (while keeping Pe and X, fixed), the new

value for the number of quantizer bits required is

B'=log, X —%log2 12—%10};2 KM—%log2 P,

1 1 1 1
=log, X, —Elog2 12—510g2M—510g2K—510g2 P,..

Therefore, to decrease B' by 1 (while keeping P, and X_ fixed), K must be chosen to satisfy

1
—ElogZK =—1
so that

log,K=2 and K =4.



Another Example: 10

To decrease the number of quantizer bits B from 16 to 12 (decrease of 4 bits), while keeping P,
and X_ fixed), the oversampling ratio M would have to be increased by a factor of K which
satisfies

1

—ElogzK =-4

log, K =38

K =256.



