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Over-­‐Sampling	
  with	
  A/D	
  Conversion	
  	
  (see	
  sec:on	
  4.9)	
  
Assume	
  that	
  the	
  analog	
  signal	
  xa(t)	
  is	
  wide-­‐sense	
  sta:onary	
  and	
  that	
  it	
  is	
  band-­‐limited	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
That	
  is,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  4.158)	
  
Consider	
  the	
  follow	
  steps	
  of	
  processing	
  this	
  signal:	
  
1.  Sample	
  xa(t)	
  at	
  a	
  sampling	
  rate	
  that	
  sa:sfies	
  

Note	
  that	
  	
  	
  	
  	
  	
  is	
  the	
  Nyquist	
  rate,	
  and	
  M	
  is	
  the	
  over-­‐sampling	
  ra:o.	
  	
  Call	
  the	
  sampled	
  signal	
  x(n).	
  
2.  Quan:ze	
  the	
  "over-­‐sampled"	
  	
  signal	
  x(n)	
  to	
  get	
  
3.  Apply	
  an	
  ideal	
  low-­‐pass	
  digital	
  filter	
  with	
  cutoff	
  of	
  	
  	
  
4.  Down-­‐sample	
  the	
  filter	
  output	
  by	
  a	
  factor	
  of	
  M.	
  
	
  	
  
	
  

Ω =ΩN

  
Φxaxa

(jΩ) = 0,     |Ω| ≥ ΩN.

  
1
T > MΩN

π
.

 
ΩN

π

  
ωc = π

M.
x̂(n).

Figure	
  4.65	
  Oversampled	
  A/D	
  conversion	
  with	
  simple	
  quan:za:on	
  and	
  down-­‐	
  
Sampling.	
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The	
  quan:za:on	
  error	
  can	
  be	
  treated	
  as	
  a	
  source	
  of	
  addi:ve	
  white	
  noise.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Also	
  note	
  that	
  the	
  output	
  of	
  the	
  above	
  system	
  consists	
  of	
  one	
  component,	
  xda(n),	
  due	
  to	
  x(n)	
  and	
  
one	
  component,	
  xde(n),	
  	
  due	
  to	
  e(n).	
  
	
  
Goal:	
  	
  Determine	
  ra:o	
  of	
  signal	
  power	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  the	
  quan:za:on	
  noise	
  power	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  as	
  a	
  
func:on	
  of	
  the	
  quan:za:on	
  step	
  size	
  	
  	
  	
  	
  	
  and	
  the	
  over-­‐sampling	
  ra:o	
  M.	
  	
  	
  
Effect	
  of	
  system	
  of	
  Figure	
  4.66	
  on	
  the	
  "signal	
  component"	
  x(n):	
  
Note	
  that	
  	
  
	
  	
  
Since	
  we	
  assume	
  that	
  xa(t)	
  is	
  wide-­‐sense	
  sta:onary,	
  neither	
  of	
  the	
  above	
  expression	
  is	
  dependent	
  
on	
  n,	
  so	
  we	
  can	
  write	
  the	
  above	
  expression	
  as:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  4.160)	
  
	
  
Note	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  considered	
  to	
  be	
  	
  a	
  sampled	
  version	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  a	
  sampling	
  rate	
  of	
  	
  	
  	
  	
  
	
  
	
  

  E xda
2 (n)⎡⎣ ⎤⎦   E xde

2 (n)⎡⎣ ⎤⎦

  E x(n + m)x(n)⎡⎣ ⎤⎦ = E xa((n + m)T)xa(nT)⎡⎣ ⎤⎦

  
φxx(m) = φxaxa

(mT)

  φxx(m)
  
φxaxa

(t)   
1
T .

Δ

Figure	
  4.66	
  	
  System	
  of	
  Figure	
  4.65	
  with	
  quan:zer	
  replaced	
  by	
  linear	
  noise	
  model	
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Also,	
  	
  note	
  that	
  
	
  
Along	
  with	
  the	
  assump:on	
  that	
  xa(t)	
  is	
  wide-­‐sense	
  sta:onary,	
  this	
  indicates	
  that	
  the	
  power	
  in	
  the	
  
original	
  analog	
  signal	
  and	
  the	
  power	
  in	
  the	
  sampled	
  signal	
  are	
  the	
  same,	
  i.e.,	
  
	
  
Note	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  related	
  to	
  their	
  corresponding	
  power	
  spectral	
  densi:es	
  via	
  	
  	
  
	
  
	
  
and	
  
	
  
	
  
The	
  corresponding	
  frequency	
  domain	
  expression	
  of	
  the	
  rela:onship	
  between	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
(from	
  the	
  development	
  of	
  the	
  Sampling	
  Theorem):	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  4.162)	
  
	
  
Since	
  we	
  assumed	
  that	
  the	
  input	
  was	
  band-­‐limited	
  to	
  	
  	
  	
  	
  	
  	
  and	
  an	
  over-­‐sampling	
  ra:o	
  of	
  M	
  was	
  
used,	
  we	
  can	
  write:	
  
	
  
	
  
	
  
	
  

  E[x
2(n)] = E[xa

2(nT)].

  E[x
2(n)] = E[xa

2(t)].

  E[x
2(n)]   E[xa

2(t)]

  
E[xa

2(t)] = 1
2π

Φxaxa
(jΩ)

−∞

∞

∫  dΩ = 1
2π

Φxaxa
(jΩ)

−ΩN

ΩN

∫  dΩ

  
E[x2(n)] = 1

2π
Φxx(e

jω)
−π

π

∫  dω = 1
2π

Φxx(e
jω)

−π/M

π/M

∫  dω.

  φxx(m)
  
φxaxa

(t)

  
Φxx(e

jΩT) = 1
T

Φxaxak=−∞

∞

∑ j Ω − 2πk
T

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

Φxx(e
jω) = 1

T
Φxaxa

jω
T

⎛

⎝⎜
⎞

⎠⎟
,                |ω| < π/M

            = 0,                     π/M < |ω| < π.

 ΩN
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The	
  output	
  of	
  the	
  down-­‐sampler	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
Note	
  that	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
Therefore,	
  we	
  can	
  write	
  
	
  
	
  
The	
  frequency	
  domain	
  representa:on	
  of	
  this	
  down-­‐sampling	
  rela:onship	
  is	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

  xda(n) = x(nM)

Φxdaxda
(ejω) = 1

M
Φxxe

j(ω−2πk)/M

k=0

M−1

∑ .

Figure	
  4.67	
  Illustra:on	
  of	
  frequency	
  and	
  amplitude	
  scaling	
  between	
  	
     Φxx
(jΩ). 

Φxaxa
jΩ( ) and	
  

E[xda(n)xda(n + m)] = E[x(nM)x((n + m)M)]

 = E[x(nM)x(nM + mM)]

= φxx(mM)

since	
  xa(t),	
  and	
  therefore	
  x(n),	
  was	
  assumed	
  to	
  be	
  wide-­‐sense	
  sta:onary.	
  

  
φxdaxda

(m) = φxx(mM)
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Since	
  x(n)	
  is	
  bandlimited	
  to	
  π/M,	
  there	
  is	
  no	
  aliasing	
  due	
  to	
  down-­‐sampling,	
  and	
  one	
  period	
  of	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  expressed	
  as	
  
	
  
	
  
	
  
We	
  can	
  now	
  determine	
  the	
  power	
  of	
  xda(n)	
  as	
  follows:	
  
	
  
	
  

  
Φxdaxda

(ejω)

  
Φxdaxda

(ejω) = 1
M
Φxx e jω/M( )  ,       |ω| < π.

  
E[xda

2(n)] = 1
2π

Φxdaxda
(ejω)

−π

π

∫  dω

  
= 1

2π
1
M
Φxx(e

jω/M)
−π

π

∫  dω.

Figure	
  4.67	
  Illustra:on	
  of	
  frequency	
  and	
  amplitude	
  scaling	
  between	
  	
  

(repeated	
  figure)	
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If	
  we	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  above	
  integral	
  can	
  be	
  wri^en	
  as	
  	
  
	
  
	
  	
  
	
  
	
  
This	
  shows	
  that	
  the	
  power	
  of	
  the	
  output	
  xda(n)	
  of	
  the	
  system	
  of	
  Figure	
  4.56	
  (the	
  part	
  of	
  the	
  
output	
  due	
  to	
  x(n))	
  is	
  the	
  same	
  the	
  power	
  in	
  x(n),	
  which	
  has	
  already	
  been	
  shown	
  to	
  have	
  the	
  
same	
  power	
  as	
  the	
  system	
  input	
  	
  xa(t).	
  
	
  
Quan:za:on	
  noise	
  component	
  of	
  system	
  output	
  
As	
  before,	
  assume	
  that	
  the	
  injected	
  quan:za:on	
  noise	
  e(n)	
  is	
  a	
  wide-­‐sense	
  sta:onary,	
  white	
  
noise	
  process	
  with	
  zero	
  mean	
  and	
  the	
  following	
  variance:	
  
	
  
	
  
As	
  already	
  shown,	
  the	
  corresponding	
  autocorrela:on	
  is	
  
	
  
and	
  the	
  power	
  density	
  spectrum	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  	
  	
  	
  
	
  
	
  

ω ' =ω M

  
= 1

2π
1
M
Φxx(e

jω ')
−π/M

π/M

∫  Mdω '

  
= 1

2π
Φxx(e

jω ')
−π/M

π/M

∫  dω '    =    E[x2(n)].

  
σe

2 = Δ2

12 .

  φee(m) = σe
2  δ(m)

Φee(e
jω) = σe

2  ,    |ω| < π
  
σe

2 = Δ2

12 . Figure	
  4.68	
  Power	
  spectral	
  
density	
  and	
  quan:za:on	
  noise	
  
with	
  an	
  oversampling	
  factor	
  on	
  M.	
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Referring	
  to	
  equa:on	
  2.190,	
  the	
  contribu:on	
  to	
  the	
  power	
  density	
  spectrum	
  of	
  the	
  output	
  of	
  the	
  
low-­‐pass	
  filter	
  (with	
  cutoff	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  gain	
  =	
  1),	
  due	
  to	
  an	
  input	
  of	
  e(n)	
  ,	
  is	
  	
  
	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  	
  	
  	
  
The	
  low-­‐pass	
  filter	
  in	
  Figure	
  4.66	
  removes	
  frequency	
  components	
  of	
  e(n)	
  in	
  the	
  range	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  The	
  noise	
  power	
  at	
  the	
  output	
  of	
  this	
  low-­‐pass	
  filter	
  is:	
  
	
  
	
  
Finally,	
  down-­‐sampling	
  by	
  a	
  factor	
  of	
  M	
  applies	
  a	
  1/M	
  magnitude	
  scale	
  factor	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  
increases	
  the	
  upper	
  frequency	
  from	
  π/M	
  to	
  π,	
  as	
  shown	
  in	
  Figure	
  4.60.	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

  ωc = π / M
Φlpf−e(e

jω) = Φee(e
jω) | H(ejω) |2

   = Φee(e
jω) i1= σe

2 ω ≤ π M

π M ≤ ω ≤ π .

  (ωc = π / M) ≤ ω ≤ π

  
E{en

2(n)} = 1
2π σe

2

−π/M

π/M

∫  dω =
σe

2

2π
2π
M

⎡

⎣
⎢

⎤

⎦
⎥ =

σe
2

M .

Φlpf−e(e
jω)

Figure	
  4.69	
  Power	
  spectral	
  density	
  of	
  signal	
  and	
  quan:za:on	
  noise	
  acer	
  down-­‐sampling	
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As	
  we	
  saw	
  for	
  the	
  case	
  of	
  the	
  signal	
  component	
  x(n),	
  passing	
  a	
  signal	
  through	
  a	
  down-­‐sampler	
  
does	
  not	
  change	
  the	
  power	
  of	
  the	
  input	
  signal.	
  	
  	
  Therefore,	
  the	
  contribu:on	
  of	
  e(n)	
  to	
  the	
  power	
  
of	
  the	
  system	
  output	
  is	
  the	
  same	
  as	
  the	
  contribu:on	
  of	
  e(n)	
  to	
  the	
  	
  power	
  of	
  the	
  output	
  of	
  the	
  
low-­‐pass	
  filter,	
  which	
  was	
  shown	
  to	
  be	
  	
  	
  	
  	
  	
  .	
  
We	
  can	
  confirm	
  this	
  by	
  calcula:ng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  directly	
  by	
  evalua:ng	
  the	
  IDTFT	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  the	
  	
  	
  	
  	
  
m	
  =	
  0	
  case:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  4.169)	
  
	
  
Inves:gate	
  the	
  trade-­‐off	
  between	
  M	
  and	
  	
  	
  	
  .	
  
Recall	
  that	
  	
  	
  	
  	
  is	
  related	
  to	
  the	
  B	
  (the	
  number	
  of	
  quan:zer	
  output	
  bits	
  used	
  to	
  represent	
  the	
  
posi:ve	
  range	
  of	
  the	
  input)	
  and	
  Xm	
  (the	
  input	
  can	
  range	
  from	
  -­‐	
  Xm	
  to	
  Xm	
  )	
  is	
  
	
  	
  	
  	
  	
  	
  	
  
	
  
Therefore,	
  the	
  output	
  power	
  of	
  noise	
  due	
  to	
  quan:za:on	
  can	
  be	
  expressed	
  as	
  
	
  
	
  
For	
  fixed	
  quan:zer	
  parameters	
  (Xm	
  and	
  B),	
  the	
  noise	
  power	
  can	
  be	
  decreased	
  by	
  increasing	
  the	
  
over-­‐sampling	
  factor	
  M.	
  	
  	
  
Since	
  the	
  power	
  output	
  due	
  to	
  the	
  "good	
  signal"	
  is	
  independent	
  of	
  M,	
  decreasing	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  also	
  
increases	
  the	
  signal-­‐to-­‐quan:za:on-­‐noise	
  ra:o	
  (SNR).	
  	
  	
  
	
  

σ 2
e

M
E x2de{ }   

Φxdexde
(ejω)

E x2
de{ } = 1

2π
σ 2
e

M−π

π

∫  dω = σ 2
e

M
= Δ 2

12M
.

Δ
Δ

Δ = Xm

2B
.

E x2de{ } = 1
12M

Xm
2B

⎛
⎝

⎞
⎠

2

.

E x2de{ }
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We	
  can	
  solve	
  for	
  the	
  number	
  of	
  quan:zer	
  bits	
  needed	
  to	
  achieve	
  a	
  target	
  value	
  Pde	
  =	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
as	
  follows:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
If	
  the	
  oversampling	
  ra:o	
  M	
  is	
  replaced	
  by	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (while	
  keeping	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  fixed),	
  	
  the	
  new	
  
value	
  for	
  the	
  number	
  of	
  quan:zer	
  bits	
  required	
  is	
  	
  
	
  
	
  
	
  
	
  
Therefore,	
  to	
  decrease	
  	
  	
  	
  	
  	
  by	
  1	
  (while	
  keeping	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  fixed),	
  	
  K	
  must	
  be	
  chosen	
  to	
  sa:sfy	
  
	
  
	
  
so	
  that	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  K = 4.	


	
  
	
  
	
  
	
  

E x2de{ }

12MPde2
2B = X 2

m

22B = X 2
m

12MPde

2B = log2 X
2
m − log212MPde

B= log2 Xm −
1
2
log212 −

1
2
log2 M − 1

2
log2 Pde.

  M' = KM  Pde  Xm

B' = log2 Xm −
1
2
log212 −

1
2
log2 KM − 1

2
log2 Pde

    = log2 Xm − 1
2

log2 12 − 1
2

log2 M − 1
2

log2 K − 1
2

log2 Pde.

  B'  Pde  Xm

 
− 1

2 log2K = −1

 log2K =2

= 2 log2 Xm − log212MPde
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Another	
  Example:	
  
To	
  decrease	
  the	
  number	
  of	
  quan:zer	
  bits	
  B	
  from	
  16	
  to	
  12	
  (decrease	
  of	
  4	
  bits),	
  while	
  keeping	
  	
  	
  	
  	
  	
  	
  
and	
  	
  	
  	
  	
  	
  	
  	
  fixed),	
  the	
  oversampling	
  ra:o	
  M	
  would	
  have	
  to	
  be	
  increased	
  by	
  a	
  factor	
  of	
  	
  K	
  which	
  
sa:sfies	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
     	


  K = 256 .	


	
  	
  
	
  

 Pde

 Xm

 
− 1

2 log2K = −4

 log2K =8
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