
ECE	
  8440	
  Unit	
  7	
  
Using	
  Noise	
  Shaping	
  to	
  Enhance	
  Over-­‐sampled	
  A/D	
  Conversion	
  	
  (see	
  sec=on	
  4.9.2)	
  
General	
  approach:	
  	
  Modify	
  the	
  over-­‐sampled	
  A/D	
  conversion	
  process	
  so	
  that	
  more	
  of	
  the	
  noise	
  
power	
  is	
  outside	
  the	
  pass-­‐band	
  of	
  the	
  low-­‐pass	
  filter	
  used	
  in	
  figure	
  4.66.	
  	
  (That	
  is,	
  more	
  of	
  the	
  
noise	
  is	
  outside	
  the	
  range	
  defined	
  by	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  )	
  	
  
Consider	
  the	
  quan=zer	
  shown	
  in	
  the	
  figure	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

ω < π M

Figure	
  4.70	
  	
  Oversampled	
  quan=zer	
  with	
  noise	
  shaping.	
  	
  

	
  	
  	
  	
  	
  1	
  



As	
  before,	
  we	
  can	
  model	
  the	
  effect	
  of	
  the	
  quan=zer	
  by	
  replacing	
  the	
  quan=zer	
  with	
  a	
  	
  
summa=on	
  node	
  that	
  adds	
  quan=za=on	
  noise	
  to	
  the	
  quan=zer	
  input.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  Figure	
  4.71	
  System	
  of	
  Figure	
  4.70	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  quan=zer	
  replaced	
  by	
  a	
  linear	
  noise	
  model.	
  
	
  

In	
  the	
  above	
  figure,	
  the	
  quan=zer	
  output	
  y(n)	
  is	
  the	
  sum	
  of	
  two	
  contribu=ons:	
  
yx(n)	
  ,	
  due	
  to	
  the	
  quan=zer	
  input	
  x(n)	
  alone	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  due	
  to	
  the	
  quan=za=on	
  noise	
  e(n)	
  alone.	
  
First,	
  determine	
  the	
  transfer	
  func=on	
  from	
  x(n)	
  to	
  y(n)	
  (call	
  this	
  Hx(z))	
  
To	
  find	
  Hx(z),	
  first	
  denote	
  the	
  output	
  of	
  	
  the	
  first	
  summa=on	
  node	
  as	
  w(n).	
  	
  For	
  this	
  analysis,	
  
assume	
  that	
  e(n)	
  =0.	
  	
  
	
  
	
  
Also	
  from	
  the	
  figure	
  we	
  can	
  see	
  that	
  
	
  

xa t( )

 ̂e(n)

  w(n) = x(n) − y(n −1)

  W(z) = X(z) − Y(z)z−1

Y(z) = W(z) 1
1− z−1

"

#
$$

%

&
''.

xd (n)
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Combining	
  the	
  above	
  two	
  expressions	
  gives	
  
	
  
	
  
	
  
	
  
Therefore,	
  	
  Hx(z)	
  =	
  1	
  
	
  
Now	
  determine	
  the	
  transfer	
  func=on	
  from	
  e(n)	
  to	
  y(n)	
  (call	
  this	
  He(z)).	
  	
  For	
  this	
  analysis,	
  assume	
  
that	
  x(n)	
  =	
  0.	
  
Denote	
  as	
  v(n)	
  the	
  other	
  input	
  to	
  the	
  summa=on	
  node	
  that	
  e(n)	
  feeds.	
  	
  The	
  output	
  of	
  this	
  
summa=on	
  node	
  due	
  to	
  quan=za=on	
  noise	
  is	
  then	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Also,	
  since	
  we	
  are	
  temporarily	
  assuming	
  that	
  x(n)	
  =	
  0,	
  the	
  rela=on	
  between	
  V(z)	
  and	
  Y(z)	
  is	
  
	
  
	
  
	
  

  
Y(z) = X(z) − z−1Y(z)( ) 1

1− z−1

⎛

⎝⎜
⎞

⎠⎟

  Y(z) − z−1Y(z) = X(z) − z−1Y(z)

Y(z) = X(z).

  y(n) = e(n) + v(n)

  Y(z) = E(z) + V(z)

  
V(z) = Y(z) −z−1 1

1− z−1
⎡

⎣
⎢

⎤

⎦
⎥
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Combining	
  the	
  previous	
  two	
  expressions	
  gives	
  
	
  
	
  
	
  
	
  
Therefore,	
  
	
  
	
  
The	
  contribu=on	
  to	
  the	
  output	
  	
  	
  	
  	
  	
  	
  	
  from	
  the	
  quan=za=on	
  error	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  therefore	
  
	
  
Also,	
  since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  contribu=on	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
	
  	
  
We	
  can	
  therefore	
  re-­‐draw	
  figure	
  4.71	
  as	
  
	
  
	
  

  
Y(z) = E(z) − Y(z) z−1 1

1− z−1
⎡

⎣
⎢

⎤

⎦
⎥

  
E(z) = Y(z) 1+ z−1

1− z−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= Y(z) 1− z−1 + z−1

1− z−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= Y(z) 1

1− z−1
⎡

⎣
⎢

⎤

⎦
⎥

  
Y(z)
E(z)

= 1− z−1 = He(z).

 y(n)  e(n)

  ̂e(n) = e(n) − e(n −1).

  Hx(z) = 1  y(n)  x(n)

 yx(n) = x(n).

Figure	
  4.72	
  Equivalent	
  representa=on	
  	
  
of	
  Figure	
  4.71	
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The	
  power	
  density	
  spectrum	
  of	
  the	
  quan=za=on	
  noise	
  	
  	
  	
  	
  	
  	
  	
  	
  that	
  is	
  present	
  in	
  y(n)	
  is	
  
	
  
	
  
Note	
  that	
  
	
  
	
  
	
  
So	
  
	
  	
  
and	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa=on	
  4.174)	
  
	
  

  ̂e(n)

 Φêê(e
jω ) = σ e

2 | He(ejω ) |2 .

 He(ejω ) = (1 - z-1) |z=ejω

 
= (1 - e− jω ) = e-jω2  ejω2 - e-jω2⎡

⎣
⎢

⎤

⎦
⎥= e- jω2 2j sin(ω /2)

 | He(ejω ) | = 2 | sin(ω /2) |

 Φêê(ejω ) = σ e
2 2 sin(ω /2)⎡⎣ ⎤⎦

2 

 = 4σ e
2 sin2(ω /2)

Figure	
  4.73	
  The	
  power	
  spectral	
  density	
  of	
  the	
  quan=za=on	
  noise	
  and	
  the	
  signal.	
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The	
  noise	
  power	
  of	
  	
  	
  	
  	
  	
  	
  	
  is	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Although	
  this	
  is	
  twice	
  the	
  size	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  the	
  quan=za=on	
  noise	
  has	
  been	
  shaped	
  so	
  that	
  
less	
  of	
  the	
  noise	
  is	
  in	
  the	
  frequency	
  band	
  	
  	
  (	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  occupied	
  by	
  the	
  over-­‐sampled	
  signal,	
  as	
  
shown	
  in	
  the	
  figure	
  on	
  the	
  previous	
  slide.	
  
	
  
A[er	
  passing	
  though	
  the	
  low-­‐pass	
  filter	
  with	
  cutoff	
  of	
  π/M	
  and	
  down-­‐sampling	
  by	
  a	
  factor	
  of	
  M	
  
(the	
  last	
  two	
  boxes	
  in	
  fig.	
  4.71)	
  the	
  power	
  spectral	
  density	
  of	
  the	
  quan=za=on	
  noise,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  
and	
  of	
  the	
  signal,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  are	
  as	
  shown	
  on	
  the	
  next	
  slide.	
  
	
  
	
  

 
E{ê2(n)}= 1

2π Φêê(e jω )
-π

π

∫ dω

 
= 1

2π 4σ e
2 sin2(ω /2)

-π

π

∫ dω

 
= 2
πσ e

2 sin2(ω /2)
-π

π

∫ dω

 
= 2
πσ e

2 1
2 - 1

2cos(ω )⎛
⎝⎜

⎞
⎠⎟-π

π

∫  dω     =  2πσ e
2 1

2(2π) - 1
2sin(ω )

-π

π⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
= 2
πσ e

2 π -0[ ]  =  2σ e
2.

 E{e2(n)}=σ e
2,

ω < π M

  ̂e(n)

 Φxdexde
(ejω )

 Φxdaxda
(ejω )
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As	
  seen	
  in	
  the	
  above	
  figure,	
  we	
  can	
  express	
  the	
  power	
  spectral	
  density	
  of	
  the	
  quan=za=on	
  noise	
  
a[er	
  low-­‐pass	
  filtering	
  and	
  downsampling,	
  over	
  the	
  frequency	
  range	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  in	
  terms	
  of	
  the	
  
power	
  spectral	
  density	
  of	
  the	
  quan=za=on	
  noise	
  before	
  low-­‐pass	
  filtering	
  and	
  down-­‐sampling	
  as	
  	
  
	
  
	
  
	
  
The	
  quan=za=on	
  noise	
  power	
  in	
  the	
  output	
  can	
  then	
  be	
  obtained	
  as	
  	
  
	
  

ω < π

 
Φxdexde

(ejω )= 1
MΦ êê(e

jω
Μ ),

 
= 4Mσ e

2 sin2(ω /2M)

 
E{xde

2 (n)}= 1
2π Φxdexde

(ejω )
-π

π

∫ dω

 
= 4σ e

2

2πM   sin2(ω /2M)
-π

π

∫  dω .

ω < π

Figure	
  4.74	
  Power	
  spectral	
  density	
  of	
  the	
  signal	
  and	
  quan=za=on	
  noise	
  a[er	
  downsampling.	
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Since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  the	
  above	
  can	
  be	
  wri^en	
  as	
  
	
  
	
  
	
  
	
  
To	
  obtain	
  an	
  approximate	
  value	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  assume	
  that	
  M	
  is	
  sufficiently	
  large	
  that	
  
	
  
Then	
  the	
  above	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  approximated	
  as	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa=on	
  4.176)	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  since	
  	
  
	
  
	
  
To	
  inves=gate	
  the	
  trade-­‐off	
  between	
  M	
  and	
  B	
  in	
  controlling	
  	
  	
  	
  	
  	
  we	
  can	
  subs=tute	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  
equa=on	
  4.176	
  to	
  get:	
  	
  	
  
	
  
	
  

σe
2 = Δ2 12

 
E{xde

2 (n)}= 4Δ2

(12)2πM   sin2(ω /2M)
-π

π

∫  dω

= Δ2

6πM   sin2(ω /2M)
-π

π

∫  dω.

 E{xde
2 (n)}

sin(ω /2M) !ω /2M.

 E{xde
2 (n)}

 
= Δ2

6πM
1

4M2 ω 2

-π

π

∫ dω   =   Δ2

24πM3
ω 3

3
−π

π

=    Δ2

72πM3 π3 − (−π)3( )

=  Δ
22π3

72πM3  =  Δ
2π2

36M3  =  E{xde
2 (n)}! Pde.

  

=  σe
2 π2

3M3
⎛
⎝⎜

⎞
⎠⎟

approximate
reduction factor
for  large M

 
 ,

 Δ = Xm/ 2
B

 
Pde =

Xm
2π 2

22B36M3 .

 Pde

σe
2 = Δ2 12.
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Now	
  solve	
  for	
  B	
  in	
  terms	
  of	
  the	
  other	
  variables:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa=on	
  4.177)	
  
	
  
Note	
  that	
  doubling	
  the	
  over-­‐sampling	
  ra=o	
  M	
  reduces	
  the	
  number	
  of	
  bits,	
  B,	
  required	
  to	
  a^ain	
  a	
  
target	
  	
  	
  	
  	
  	
  	
  value	
  by	
  3/2	
  (assuming	
  that	
  	
  	
  	
  	
  	
  is	
  unchanged).	
  	
  	
  
	
  
Recall	
  that	
  without	
  noise	
  shaping,	
  doubling	
  the	
  over-­‐sampling	
  ra=o	
  M	
  only	
  reduced	
  the	
  number	
  
of	
  bits,	
  B,	
  required	
  to	
  a^ain	
  a	
  target	
  	
  	
  	
  	
  	
  value	
  by	
  1/2.	
  
	
  
The	
  table	
  below	
  shows	
  the	
  number	
  of	
  quan=zer	
  bits	
  that	
  can	
  be	
  reduced	
  (and	
  s=ll	
  maintain	
  a	
  
fixed	
  	
  	
  	
  	
  	
  	
  value)	
  by	
  using	
  an	
  over-­‐sampling	
  ra=o	
  M	
  with	
  an	
  A/D	
  converter,	
  both	
  with	
  and	
  without	
  
noise	
  shaping.	
  	
  
	
  
	
  

 
22B = Xm

2π 2

36M3Pde

 2B =2log2(Xm)+2log2(π) - log2(36)-3log2(M)- log(Pde)

 
B = log2(Xm)+ log2(π) - 1

2 log2(36)- 3
2 log2(M)- 1

2 log(Pde)

 
= log2(Xm)+ log2(π) - log2(6)- 3

2 log2(M)- 1
2 log(Pde)

 
= log2(Xm)+ log2(

π
6)- 3

2 log2(M)- 1
2 log(Pde).

 Pde  Xm

 Pde

 Pde
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The	
  above	
  noise	
  shaping	
  approach	
  can	
  be	
  extended	
  by	
  using	
  mul=ple	
  stages,	
  as	
  shown	
  in	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
the	
  figure	
  below:	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
For	
  this	
  two-­‐stage	
  system,	
  the	
  transfer	
  func=on	
  between	
  the	
  quan=za=on	
  noise	
  source	
  and	
  the	
  
output	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (the	
  square	
  of	
  H(z)	
  for	
  one-­‐stage	
  of	
  noise	
  shaping).	
  
Therefore,	
  the	
  power	
  density	
  spectrum	
  of	
  quan=za=on	
  noise	
  at	
  the	
  system	
  output	
  can	
  be	
  found	
  
by	
  squaring	
  the	
  system	
  contribu=on	
  in	
  the	
  one-­‐stage	
  system.	
  	
  	
  
Before:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  (one-­‐stage	
  noise	
  shaping)	
  
	
  
Now:	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (two-­‐stage	
  noise	
  shaping)	
  
	
  
	
  

 He(z)= (1-z-1)2

 Φêê(e jω ) = σ e
2 2 sin(ω /2)⎡⎣ ⎤⎦

2 

 Φêê(e jω ) = σ e
2 2 sin(ω /2)⎡⎣ ⎤⎦

4 

Figure	
  4.75	
  Oversampled	
  quan=zer	
  with	
  second-­‐order	
  noise	
  shaping.	
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For	
  p	
  stages	
  of	
  noise	
  shaping,	
  the	
  corresponding	
  power	
  density	
  spectrum	
  of	
  quan=za=on	
  noise	
  	
  	
  
at	
  the	
  system	
  output	
  can	
  be	
  expressed	
  as	
  
	
  	
  
The	
  table	
  below	
  shows	
  how	
  the	
  number	
  of	
  quan=zer	
  bits	
  can	
  be	
  reduced	
  (and	
  s=ll	
  maintain	
  a	
  
fixed	
  value	
  	
  of	
  	
  	
  	
  	
  	
  	
  for	
  several	
  values	
  of	
  p	
  and	
  M.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Example:	
  
With	
  p	
  =	
  2	
  and	
  M	
  =	
  64	
  the	
  number	
  of	
  quan=zer	
  bits	
  could	
  be	
  reduced	
  by	
  about	
  12.9	
  rela=ve	
  to	
  
the	
  case	
  of	
  not	
  using	
  any	
  over-­‐sampling.	
  Therefore,	
  a	
  1-­‐bit	
  quan=zer	
  with	
  p	
  =	
  2	
  and	
  M	
  =	
  64	
  would	
  
contribute	
  the	
  same	
  quan=za=on	
  noise	
  power	
  to	
  the	
  output	
  as	
  a	
  14-­‐bit	
  quan=zer	
  without	
  over-­‐
sampling.	
  
	
  
Note:	
  	
  For	
  large	
  values	
  of	
  p,	
  there	
  is	
  a	
  risk	
  of	
  instability	
  and	
  oscilla=ons	
  to	
  occur.	
  
	
  
	
  

 Φêê(e jω ) = σ e
2 2 sin(ω /2)⎡⎣ ⎤⎦

2p .

 Pde )
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