ECE 8440 Unit 7

Using Noise Shaping to Enhance Over-sampled A/D Conversion (see section 4.9.2)

General approach: Modify the over-sampled A/D conversion process so that more of the noise

power is outside the pass-band of the low-pass filter used in figure 4.66. (That is, more of the

noise is outside the range defined by |o|<z/M.)

Consider the quantizer shown in the figure below:
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Figure 4.70 Oversampled quantizer with noise shaping.
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As before, we can model the effect of the quantizer by replacing the quantizer with a p)

summation node that adds quantization noise to the quantizer input.
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Figure 4.71 System of Figure 4.70 from X, (t) to X, (n) with qguantizer replaced by a linear noise model.

In the above figure, the quantizer output y(n) is the sum of two contributions:
y,(n) , due to the quantizer input x(n) alone

é(n) , due to the quantization noise e(n) alone.

First, determine the transfer function from x(n) to y(n) (call this H,(z))

To find H,(z), first denote the output of the first summation node as w(n). For this analysis,
assume that e(n) =0. e[n]

w(n) = x(n)-y(n-1) | I
W(z) = X(z2)-Y(2)z + ~w (] 1 y[n]
x[n] 1-z71 e

Also from the ﬁjure we can see that

Y(z)=W(z)( L]
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Combining the above two expressions gives 3
— _ o 1
Y(2)=(X(2)-2 Y(z))[1 - 2_1]

Y(2)-z'Y(z2) = X(2)-zY(2)

Y(z) = X(2).
Therefore, H,(z) =1

Now determine the transfer function from e(n) to y(n) (call this H.(z)). For this analysis, assume
that x(n) = 0.

Denote as v(n) the other input to the summation node that e(n) feeds. The output of this
summation node due to quantization noise is then
y(n) = e(n)+v(n) e[n]

Y(z) =E(z)+ V(2)

Also, since we are temporarily assuming that x(n) = 0, the relation between V(z) and Y(z) is

V(z) = Y(z)[—z1 1 1 1}



Combining the previous two expressions gives 4
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Therefore, 1l
Y(z) _ 1
ﬁ_1 z' =H_(2).

The contribution to the outputy(n) from the quantization error e(n)is therefore
e(n)=e(n)—e(n-1).

Also, since H(z)=1, the contribution to y(n) from x(n) is

y,(n) = x(n).
We can therefore re-draw figure 4.71 as
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The power density spectrum of the quantization noise é(n) that is present in y(n) is

P, () =0Z1H ().

Note that
H.(e”)=(1-2z")I

z=el®

—(1-e*)=g¢" {ejz -e_jz} —e '22jsin(w/2)

So

IH,(e*)1=21sin(e/2)

and

i . 2
D, (e) = oZ[2sin(w/2)]
= 462 sin?(/ 2) (equation 4.174)
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Figure 4.73 The power spectral density of the quantization noise and the signal.



The noise power ofé(n) is 6
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Although this is twice the size of E{€*(n)}=0¢. the quantization noise has been shaped so that
less of the noise is in the frequency band (®/<#/M ) occupied by the over-sampled signal, as
shown in the figure on the previous slide.

After passing though the low-pass filter with cutoff of m/M and down-sampling by a factor of M
(the last two boxes in fig. 4.71) the power spectral density of the quantization noise, ®x,x, (€*),
and of the signal, Dy (eJ‘”), are as shown on the next slide.
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Figure 4.74 Power spectral density of the signal and quantization noise after downsampling.

As seen in the above figure, we can express the power spectral density of the quantization noise

after low-pass filtering and downsampling, over the frequency range |o|<~ , in terms of the

power spectral density of the quantization noise before low-pass filtering and down-sampling as
1

o 2
D yx (€7) = ﬁ‘péé(e ), 0| <7

= %of sin(w / 2M)

The quantization noise power in the output can then be obtained as

17 .
Epx ()} = [ @y, x, (e")do

2 m
0= | sin(w/2M) do.



Since 6 = A*/12 the above can be written as

“gﬁ [ sin?(w/2M) do

2 m
= o J sin(w/2M) do.

E{xg(n)}=

To obtain an approximate value of E{x3 (n)}, assume that M is sufficiently large that

sin(w/2M) =w / 2M.
Then the above expression forE{x2,(n)} can be approximated as

= A 1T = A2 o _ A? 3 3

~ 6mM 4M‘?_1j1 o = 241IM® 3 _ﬂ— Z2IVE (n —(-m) )
A22 3 AZ 2 . .

) 7211:43 B 36:43 = E{x%,(n)}2P,..  (equation 4.176)

n° _
= o, {3M3j > since ol =A*/12.

approximate
reduction factor
for large M

To investigate the trade-off between M and B in controlling Psewe can substitute A=X_/2" in
equation 4.176 to get:
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Now solve for B in terms of the other variables:

ZZB — Xiﬂ-
36M°P,,

ZB—ZIogz(X )+2Iogz(11) log, (36)- 3IogZ(M) Iog(Pde)
=10g;,(X,)+l0g, (m)- 1 10g, (36)- 3 log, (M) -

=log, (X,,) +log, (1) -log,(6) -

=log, (X,,) + Iogz( )-

Iog(Pde)

IogZ(M) - Iog(Pde)

IogZ(M) Iog(Pde)

(equation 4.177)

Note that doubling the over-sampling ratio M reduces the number of bits, B, required to attain a

target P, value by 3/2 (assuming that X,, is unchanged).

Recall that without noise shaping, doubling the over-sampling ratio M only reduced the number

of bits, B, required to attain a target P, value by 1/2.

The table below shows the number of quantizer bits that can be reduced (and still maintain a
fixed P, value) by using an over-sampling ratio M with an A/D converter, both with and without

noise shaping.

Direct Noise.

M quantization shaping
4 1 2.2
8 1.5 3.7
16 2 5.1
32 2.5 6.6
64 3 8.1

TABLE4.1 EQUIVALENT SAVINGS IN
QUANTIZER BITS RELATIVE TO M =1 FOR
DIRECT QUANTIZATION AND FIRST-ORDER
NOISE SHAPING



The above noise shaping approach can be extended by using multiple stages, as shown in 10
the figure below:
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Figure 4.75 Oversampled quantizer with second-order noise shaping.

For this two-stage system, the transfer function between the quantization noise source and the
output is

H.(z)=(1-z")> (the square of H(z) for one-stage of noise shaping).

Therefore, the power density spectrum of quantization noise at the system output can be found
by squaring the system contribution in the one-stage system.

Before: Pe(e”)=0%[2sin(@/2)]  (one-stage noise shaping)

Now: o, (e*)=02[2 sin(a)/z)]“ (two-stage noise shaping)



For p stages of noise shaping, the corresponding power density spectrum of quantization noise 11
at the system output can be expressed as

@, (e”) =02 [2sin(w/2)]".

The table below shows how the number of quantizer bits can be reduced (and still maintain a
fixed value of p,)for several values of p and M.

TABLE 4.2 REDUCTION IN QUANTIZER
BITS AS ORDER p OF NOISE SHAPING

Noite s\\q‘,‘,na_ Oversampling factor M
Quantizer
order p 4 8 16 32

10 15 % By 24 25 wma {“‘% ¢ a‘f 'h
22 . 37 51~ 66

64
3.0 } Sa
8.1 —
20 54 79 104 Cable €1,
35 70 105 140 175

41 85 130 175 220

46 100 155 210 265
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Example:

With p =2 and M = 64 the number of quantizer bits could be reduced by about 12.9 relative to
the case of not using any over-sampling. Therefore, a 1-bit quantizer with p =2 and M = 64 would

contribute the same quantization noise power to the output as a 14-bit quantizer without over-
sampling.

Note: For large values of p, there is a risk of instability and oscillations to occur.



