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Use of Over-Sampling and Noise Shaping in D/A Conversion

If we implement over-sampling with noise shaping in the D/A conversion process, we can reduce
the number of bits used in the D/A converter (e.g., 16 bits = 8 bits), without introducing a major
amount of quantization noise to the output. The figure below shows the overall structure of the
proposed system.
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Figure 4.76 Oversampled D/A conversion

The figure below shows the use of a first-order noise shaping system used to help implement the
guantizer shown in the above figure:
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Figure 4.77 First-order noise-shaping system
for oversampled D.A quantization.




As before, the quantizer in the previous diagram can be represented by an additive source 5
of white noise, e(n), as shown below:

Figure 4.78 System of Figure 4.77 with
qguantizer replaced by linear noise model.

Since  y(n) = x(n) +e(n)

then  ¢(n) = y(n) - x(n).

First, determine the transfer function from y(n) to the quantizer output y(n) in figure 4.78, with
the e(n) contribution set to zero. As can be seen from this figure,

y(n) = y(n) (assuming e(n) = 0).



The transfer function fromy(n) to the quantizer outputy(n) is therefore 3
Hy(z) =1

Next, determine the transfer function from the quantization error e(n) to the quantizer output
y(n), with y(n)set to zero. As can be seen from figure 4.78,

y(n) = e(n) - e(n-1)

The transfer function from e(n) to y(n) is therefore

H(z)=1-2"

As already shown for the case of C/D conversion, the magnitude of the frequency response of a
filter with this transfer function is

IH_(e) = 2 Isin(w / 2)]

Therefore, the output power density spectrum due to the noise signal e(n) is

@ (e”)=0;@2sin(0/2))* (equation 4.181)

Example of figure 4.79

Let y,4(n) denote a signal which is the output of a digital filter and which is to be converted back to
a continuous-time signal. (It is assumed that the Nyquist sampling rate is being used in
representing y4(n).)
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Figure 4.79 (a) Power spectral density of signal y,(n) (b) Power spectral density of signal y(n) (c) Power spectral
density of quantization noise. (d) Power spectral density of the continuous-time signal and the quantization noise.

In part "d" of the above figure: Ti}e final step in the process is a modified idea 1? Clconverter
which uses a conversion rate of — and a low-pass analog filter with cutoff of| 11 |5 instead of
the normal cutoff of Tl . The gain of the lowpass filter is T,,,, which is the same as for the
"original" ideal D/C converter.

Since it was assumed that the Nyquist rate was used to sample the original analog input, we

know that input sampling rate —— satisfies
Ti _ 2w which correspondsto Q = L
: T

in in

T,

in



Because of the intermediate step of up-sampling by a factor of M, the D/C converter at the 5
output will be operating at a sample interval of T, :M

Therefore, the highest frequency in the analog output will be

Q. = (1) 1 = (ijﬁ - T _ Q_, as desired.
o M)T M)T T. o

out in in

Note: The above development assumes using an ideal analog low-pass filter in the D/C
converter. If more D/A quantization noise can be tolerated in the output, then a non-ideal
analog filter can be used. (If multi-stage noise shaping is used, then a non-ideal analog filter can
be used with less penalty in overall performance, since more of the D/A quantization noise is
pushed to higher frequencies, farther from the cutoff frequency of the analog filter.)

Phase-Related Topics from Chapter 5

Consider the system function for a system that has N poles and M zeros.
M
-k
Y@z) dbz

k=0

X(z) (equation 5.20)

Yaz*
k=0
H(z) can also be represented in factored form as follows:

Y() (bo J g('l — ckz—1)

H(z)=—== S
X@ (2% )110-4d,2

H(z) =

(equation 5.21)



The zeros of H(z) are at located at the {c,} and the poles of H(z) are at the {d,}. 6
The frequency response for the system whose H(z) can be found from:

H(e*) = H(z)‘zzem

If H(z) is represented in the factored form as in equation 5.21 above, its frequency response can
be expressed as:

H(1— ce™)
H(e*) = [ J « (equation 5.46)
[10-de™)

k=1
In general, H(e*) can be expressed in terms of a magnitude response function and a phase
response:

H(e™)= IH(e") e or H(e™) = IH(e™)] el

Starting with the representation of H(z) in equation 5.21, the phase response function can be
written as

argH(e*) = arg[ ] kZargﬂ—cke‘l“’]—kz_{argﬂ—dke"“’] (equation 5.51)



Note that argH(e’) and argH(e*)+2=r, where r is an integer, contribute the same to He) . 7
That is because

ej[argH(ej“’)+2nr] _ ej[argH(eJ‘”)] ej[27tr]
—_—
1

If r is selected so that argH(e*)+2=nr is between -mand m, the resulting sum is called the Principal
Value of phase and is denoted ARG H(e*). That is,-r < ARG[H(e!*)] < =

If the phase response function is not limited to this range, it is denoted as arg[H(e™)].



The following figure shows a typical relationship between ARG[H(e*)] and arg[H(e*)]H(e*) 8
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Figure 5.1 (a) Continuous-phase curve for a system function
evaluated on the unit circle. (b) Principal value of the phase
curve in part (a). (c) Integer multiples of 2m to be added to
ARG[H(el*)] to obtain arg[H(el®)]



The group delay of a system is defined as

(o) = grdiH(e®)] = —di[arg[mejm
o

Note that except for values of @ for which ARG[H(e!*)] has a discontinuity,

S [ARGIH(e")] = L [arg[H(e*)]

Based on the representation of the phase response function in equation 5.51. we can write
N M

grd[H(e™)] = i(arg[1 -de’)- i(arg[1 -ce™) (equation 5.52)
1 do 1 do

Using the fact that
Im[H(ej‘*’)]}

arg[H(e*) = arCtan{Re[H(ej"’)]

and taking derivatives, the group delay can be expressed as

. N 1d P -Refd e} M Ic PP -Re{c e} (equation 5.53)
rd[H(e* - T '
ordlHe™)1- > Td 'd, P —2Re{d e} E1+|c ? _2Refc.e *}

as will be verified later in this unit.



Phase response of a single zero or pole 10

Consider the phase response of one of the terms in the factored form of H(e*) shown in equation
5.46 with the zero or pole represented as ¢, ord, = re¥

arg[1-refe®]=arg[1-rcos(® - m) - jrsin(é — )]

—rsin(6 - o) rsin(m-0)
= arctan = arctan .
1-rcos(6 - ) 1-rcos(w-0)

Then we can determine the group delay of this term as follows.

d rsin(o-90)
——arctan
do T1-rcos(m-0)

_ 1 d{ rsin(m — 6) }

_1+ rsin(e — 6) 2 do 1-rcos(m—90)
T-rcos(m-0)

Note that
d[ rsin(m - 0) }

do T1-rcos(m—-90)
~ [1 —rcos(w - e)}[r cos(w — e)} - [r sin(w — e)}[r sin(m — 9)]
) [1 —rcos(m - 6)}2
rcos(m — 0) — r2 cos?(m — 8) — r? sin(m — 0)
[1 —rcos(w - G))];2

rcos(m—0) —r?
[1 —rcos(w— 0)}2




Therefore, the group delay is
1 ~ rcos(ow-6)-r?

1+ rsin(m-0) ’ [1—rcos(m—6)T
1-rcos(m-0)

r> —rcos(o - 6) _ r2 —rcos(m — 6)
[1 _rcos(m - G)T Fr2sini(@—9) 1-2rcos(e-6)+ r? cos?(m - 8) + r? sin(w — 8)

which can be written as
_ r’ —rcos(m - 0)
1-2rcos(m — 0) +r?

=grd [1 —~ rej"e‘j‘“]

For a system having an arbitrary, finite number of poles and zeros, the above results for the
phase and group delay can be easily extended. For example, if a system includes a pair of
complex conjugate poles atz=re® andz=re®, H(z) can be expressed as

1

H(z)= (1-re®z(1-re®z7)

Then, using results developed above, the phase response for the above second order term is

o rsin(m - 0) rsin(o + 0) )
<IH(eJ ) = —arctan{_l = rcos((o ~ 6)i| - arctan[_l ~ rcos((o N 6)} (equahon' 563b)



and the corresponding group delay is 12

grd[Her)] = —_ - —reos@-6) _r*-rcos(w+6) (equation 5.63c)
1+ r? —2rcos(m - 0) 1+r? - 2rcos(m + 0)

which is consistent with equation 5.53 shown earlier.

Relationship Between Magnitude and Phase (Section 5.4)

In general: the magnitude response and the phase response of a system are independent.

For a rational system: For a given magnitude response, there are multiple possible phase
responses. If the number of poles and zeros is known, the number of possible phase responses is
finite. Otherwise, it is infinite. Show this:

Given some | H(e*) |, we can form | H(e*) I which can be expressed as
| H(e™) P= H(e*) H'(e/).
We know that
H(e*) = H(z)rej
Also note that
1

of2] w(L )
Z ) e

Therefore,

| H(e™) 2= H)H' [le

z=ei®



Recall that the factored form for H(z) when H(z) is a rational system function:

b IM[(1—ckz“)
H(z) = [_OJ—kN1 , .
a, [1a-dz (equation 5.69)

k=1

Note that for the above H(z) we can write
M
H[LJ:(&]H“‘%Z )
* N
k=1
and, assuming that b, and a, are real-valued,
M
H*[iH&}H““’kZ)_
* N
2) \JT0-d2)
k=1

Now define a new term:

C(z) = H(z)H*[ 1 ]

Z*
Then we can write:

o bozﬁ(1_ckz—1)(1_c;z)
C(z):H(z)H(;]:( J —

)' (equation 5.72)




From the above expression we see that C(z) has a zero at z=c_and also has a zero at 14

Consider a zero represented as ¢, =re® with r< 1.
Then

Therefore, a zero of C(z) inside the unit circle atc, also has a "companion" zero outside the unit

circle at l The same is true for poles of C(z).

C

For a stable system, the poles of C(z) inside the unit circle must belong to H(z). However, either

member of a "zero-pair" of C(z) could be assigned to H(z) and the other to H’ l] . (Both options
. . 4

have the same magnitude-squared frequency response function.)




Example 5.9 15

The following figures show the poles and zeros of two systems, H,(z) and H,(z), which have the
same C(z):
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Figure 5.16 Pole-zero plots for two system functions and their common magnitude
Squared function. (a) H,(z), (b) H,(z), and (c) C(z) = C,(z)= C,(z)



Example 5.10 from text 16

The C(z) for this example includes 2 pairs of complex-conjugate zeros and 1 pair of real zeros. (It
also includes 3 pole-pairs.) There are 4 different stable, causal H(z) functions which would have
the same C(z) function, assuming that h(n) must be real-valued (and the coefficients of the
implementing difference equation must be real-valued). The 4 options are shown below:

Zeros of H(z) Zeros of H*(1/z*)

Option 1: 2,25, 23 2, Zs, Zg
Option 2: 2., 25, 2 2, Zs, 23
Option 3: 24 25, 23 2y, 25, Zg
Option 4: 2, Zs, Zg 2y, 2,, 23
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Figure 5.17 Pole-zero plot for the magnitude-squared function in Example 5.10



If h(n) is not constrained to be real, then there would be 8 possibilities for H(z) that would all 17
have the same C(z) function. There are shown below:

Zeros of H*(1/z*)

Zeros of H(z)

Option 1: 20,25 23 2, Zs, Zg
Option 2: 2,25, Zg 2, Zs, Z3
Option 3: 2, Zs, 23 2y, 25, Zg
Option 4: 2, Zs, Zg 2,25 23
Option 5: 2y, 25, 23 24 25, Z
Option 6: 2y, Zs, Zg 2, 25, 23
Option 7: 2425, 23 Z,, Zs, Zg
Option 8: 24 25, Zg Z,, Zg, 23

Note: If the number of poles and zeros is not restricted, then an infinite number of versions of
H(z) can have the same C(z). This is because one or more all-pass filters can be cascaded with the
other poles and zeros of H(z), without changing C(z), as will be shown in the next unit.



