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Use	
  of	
  Over-­‐Sampling	
  and	
  Noise	
  Shaping	
  in	
  D/A	
  Conversion	
  	
  
If	
  we	
  implement	
  over-­‐sampling	
  with	
  noise	
  shaping	
  in	
  the	
  D/A	
  conversion	
  process,	
  we	
  can	
  reduce	
  
the	
  number	
  of	
  bits	
  used	
  in	
  the	
  D/A	
  converter	
  (e.g.,	
  16	
  bits	
  à	
  8	
  bits),	
  without	
  introducing	
  a	
  major	
  
amount	
  of	
  quanIzaIon	
  noise	
  to	
  the	
  output.	
  	
  The	
  figure	
  below	
  shows	
  the	
  overall	
  structure	
  of	
  the	
  
proposed	
  system.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
The	
  figure	
  below	
  shows	
  the	
  use	
  of	
  a	
  first-­‐order	
  noise	
  shaping	
  system	
  used	
  to	
  help	
  implement	
  the	
  
quanIzer	
  shown	
  in	
  the	
  above	
  figure:	
  
	
  
	
  

Figure	
  4.76	
  Oversampled	
  D/A	
  conversion	
  

Figure	
  4.77	
  First-­‐order	
  noise-­‐shaping	
  system	
  
for	
  oversampled	
  D.A	
  quanIzaIon.	
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As	
  before,	
  the	
  quanIzer	
  in	
  the	
  previous	
  diagram	
  can	
  be	
  represented	
  by	
  an	
  addiIve	
  source	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
of	
  white	
  noise,	
  e(n),	
  as	
  shown	
  below:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
   	
   	
   	
   	
   	
   	
   	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  
Since	
  
	
  then	
  
	
  
First,	
  	
  determine	
  the	
  transfer	
  funcIon	
  from	
  	
  	
  	
  	
  	
  	
  	
  to	
  the	
  quanIzer	
  output	
  y(n)	
  in	
  figure	
  4.78,	
  with	
  
the	
  e(n)	
  contribuIon	
  set	
  to	
  zero.	
  	
  As	
  can	
  be	
  seen	
  from	
  this	
  figure,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (assuming	
  e(n)	
  =	
  0).	
  	
  
	
  
	
  
	
  

 e(n) = y(n) − x(n).
 y(n) = x(n) + e(n)

  ̂y(n)

  y(n) = ŷ(n)

 x(n)

Figure	
  4.78	
  System	
  of	
  Figure	
  4.77	
  with	
  
quanIzer	
  replaced	
  by	
  linear	
  noise	
  model.	
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The	
  transfer	
  funcIon	
  from	
  	
  	
  	
  	
  	
  	
  	
  to	
  the	
  quanIzer	
  output	
  	
  	
  	
  	
  	
  	
  	
  is	
  therefore	
  
	
  
Next,	
  determine	
  the	
  transfer	
  funcIon	
  from	
  the	
  quanIzaIon	
  error	
  e(n)	
  to	
  the	
  quanIzer	
  output	
  	
  	
  	
  	
  	
  	
  
y(n),	
  with	
  	
  	
  	
  	
  	
  	
  	
  set	
  to	
  zero.	
  	
  As	
  can	
  be	
  seen	
  from	
  figure	
  4.78,	
  	
  	
  
y(n)	
  =	
  e(n)	
  -­‐	
  e(n-­‐1)	
  
The	
  transfer	
  funcIon	
  from	
  e(n)	
  to	
  y(n)	
  is	
  therefore	
  	
  
	
  
As	
  already	
  shown	
  for	
  the	
  case	
  of	
  C/D	
  conversion,	
  the	
  magnitude	
  of	
  the	
  frequency	
  response	
  of	
  a	
  
filter	
  with	
  this	
  transfer	
  funcIon	
  is	
  
	
  
Therefore,	
  the	
  output	
  power	
  density	
  spectrum	
  due	
  to	
  the	
  noise	
  signal	
  e(n)	
  is	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon	
  	
  4.181)	
  
	
  
Example	
  of	
  figure	
  4.79	
  
Let	
  yd(n)	
  denote	
  a	
  signal	
  which	
  is	
  the	
  output	
  of	
  a	
  digital	
  filter	
  and	
  which	
  is	
  to	
  be	
  converted	
  back	
  to	
  
a	
  conInuous-­‐Ime	
  signal.	
  (It	
  is	
  assumed	
  that	
  the	
  Nyquist	
  sampling	
  rate	
  is	
  being	
  used	
  in	
  
represenIng	
  yd(n).)	
  
	
  	
  
	
  
	
  

  ̂y(n)   y(n)

  Hŷ(z) = 1

  ̂y(n)

  He(z) = 1− z−1

  | He(e
jω) |= 2 | sin(ω / 2) |

  Φêê(e
jω) = σe

2(2sin(ω / 2))2
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In	
  part	
  "d"	
  of	
  the	
  above	
  figure:	
  The	
  final	
  step	
  in	
  the	
  process	
  is	
  a	
  modified	
  ideal	
  D/C	
  converter	
  
which	
  uses	
  a	
  conversion	
  rate	
  of	
  	
  	
  	
  	
  	
  	
  and	
  a	
  low-­‐pass	
  analog	
  filter	
  with	
  cutoff	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  instead	
  of	
  
the	
  normal	
  cutoff	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  The	
  gain	
  of	
  the	
  lowpass	
  filter	
  is	
  	
  	
  	
  	
  	
  	
  ,	
  which	
  is	
  the	
  same	
  as	
  for	
  the	
  
"original"	
  ideal	
  D/C	
  converter.	
  
	
  
Since	
  it	
  was	
  assumed	
  that	
  the	
  Nyquist	
  rate	
  was	
  used	
  to	
  sample	
  the	
  original	
  analog	
  input,	
  we	
  
know	
  that	
  input	
  sampling	
  rate	
  	
  	
  	
  	
  	
  saIsfies	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  which	
  corresponds	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  

1
Tout

π
M

⎛
⎝⎜

⎞
⎠⎟
1
Toutπ

Tout

⎛
⎝⎜

⎞
⎠⎟

Tout

1
Tin1

Tin
= Ωmax

π
Ωmax =

π
Tin

Figure	
  4.79	
  	
  (a)	
  Power	
  spectral	
  density	
  of	
  signal	
  yd(n)	
  	
  (b)	
  Power	
  spectral	
  density	
  of	
  signal	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (c)	
  Power	
  spectral	
  
density	
  of	
  quanIzaIon	
  noise.	
  	
  (d)	
  Power	
  spectral	
  density	
  of	
  the	
  conInuous-­‐Ime	
  signal	
  and	
  the	
  quanIzaIon	
  noise.	
  

 ̂y(n)
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Because	
  of	
  the	
  intermediate	
  step	
  of	
  up-­‐sampling	
  by	
  a	
  factor	
  of	
  M	
  ,	
  the	
  D/C	
  converter	
  at	
  the	
  
output	
  will	
  be	
  operaIng	
  at	
  a	
  sample	
  interval	
  of	
  	
  
Therefore,	
  the	
  highest	
  frequency	
  in	
  the	
  analog	
  output	
  will	
  be	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  as	
  desired.	
  
	
  
Note:	
  	
  The	
  above	
  development	
  assumes	
  using	
  an	
  ideal	
  analog	
  low-­‐pass	
  filter	
  in	
  the	
  D/C	
  
converter.	
  	
  If	
  more	
  D/A	
  quanIzaIon	
  noise	
  can	
  be	
  tolerated	
  in	
  the	
  output,	
  then	
  a	
  non-­‐ideal	
  
analog	
  filter	
  can	
  be	
  used.	
  	
  (If	
  mulI-­‐stage	
  noise	
  shaping	
  is	
  used,	
  then	
  a	
  non-­‐ideal	
  analog	
  filter	
  can	
  
be	
  used	
  with	
  less	
  penalty	
  in	
  overall	
  performance,	
  since	
  more	
  of	
  the	
  D/A	
  quanIzaIon	
  noise	
  is	
  
pushed	
  to	
  higher	
  frequencies,	
  farther	
  from	
  the	
  cutoff	
  frequency	
  of	
  the	
  analog	
  filter.)	
  
	
  
Phase-­‐Related	
  Topics	
  from	
  Chapter	
  5	
  
Consider	
  the	
  system	
  funcIon	
  for	
  a	
  system	
  that	
  has	
  N	
  poles	
  and	
  M	
  zeros.	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon	
  5.20)	
  
	
  
H(z)	
  can	
  also	
  be	
  represented	
  in	
  factored	
  form	
  as	
  follows:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon	
  5.21)	
  
	
  
	
  

Tout =
Tin
M

Ωout =  π
M

⎛
⎝

⎞
⎠
1

Tout

 =  π
M

⎛
⎝

⎞
⎠

M
Tin

 =  π
Tin

=  Ωmax

  

H(z) = Y(z)
X(z)

=
bkz

−k

k=0

M

∑

akz
−k

k=0

N

∑

  

H(z) = Y(z)
X(z)

=
b0

a0

⎛

⎝
⎜

⎞

⎠
⎟

(1− ckz
−1)

k=1

M

∏

(1− dkz
−1)

k=1

N

∏
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The	
  zeros	
  of	
  H(z)	
  are	
  at	
  located	
  at	
  the	
  {ck}	
  and	
  the	
  poles	
  of	
  H(z)	
  are	
  at	
  the	
  {dk}.	
  
The	
  frequency	
  response	
  for	
  the	
  system	
  whose	
  H(z)	
  can	
  be	
  found	
  from:	
  
	
  
	
  
If	
  H(z)	
  is	
  represented	
  in	
  the	
  factored	
  form	
  as	
  in	
  equaIon	
  5.21	
  above,	
  its	
  frequency	
  response	
  can	
  
be	
  expressed	
  as:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon	
  5.46)	
  
	
  
In	
  general,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  expressed	
  in	
  terms	
  of	
  a	
  magnitude	
  response	
  funcIon	
  and	
  a	
  phase	
  
response:	
  
	
  
	
  
StarIng	
  with	
  the	
  representaIon	
  of	
  H(z)	
  in	
  equaIon	
  5.21,	
  the	
  phase	
  response	
  funcIon	
  can	
  be	
  
wrieen	
  as	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon	
  5.51)	
  
	
  
	
  	
  
	
  

  
H(ejω) = H(z)

z=ejω

  

H(ejω) =
b0

a0

⎛

⎝
⎜

⎞

⎠
⎟

(1− cke
− jω)

k=1

M

∏

(1− dke
− jω)

k=1

N

∏

  H(ejω)

   H(ejω) =  | H(ejω) | ejH(ejω )

argH(ejω) = arg
b0

a0

⎛

⎝
⎜

⎞

⎠
⎟ + arg[1− cke

− jω] −
k=1

M

∑ arg[1− dke
− jω]

k=1

N

∑

or	
   H(ejω) =  | H(ejω) | ejarg[H(ejω )]
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Note	
  	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  where	
  r	
  is	
  an	
  integer,	
  contribute	
  the	
  same	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  
	
  
	
  
	
  
	
  
	
  
If	
  r	
  is	
  selected	
  so	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  between	
  	
  -­‐π	
  and	
  π,	
  the	
  resulIng	
  sum	
  is	
  called	
  the	
  Principal	
  
Value	
  of	
  phase	
  and	
  is	
  denoted	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  That	
  is,	
  
	
  
If	
  the	
  phase	
  response	
  funcIon	
  is	
  not	
  limited	
  to	
  this	
  range,	
  it	
  is	
  denoted	
  as	
  	
  	
  
	
  
	
  

argH(ejjω)   H(ejω)

  ARG H(ejω)   −π < ARG[H(ejω)] < π

arg[H(ejω)].

argH(ejjω) + 2πr

That	
  is	
  because	
  

  
e j[argH(e jω )+2πr] = e j[argH(e jω )] e j[2πr]

1


argH(ejjω) + 2πr
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The	
  following	
  figure	
  shows	
  a	
  typical	
  relaIonship	
  between	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  

  H(ejω)  ARG[H(ejω)]   arg[H(ejω)]

Figure	
  5.1	
  	
  (a)	
  ConInuous-­‐phase	
  curve	
  for	
  a	
  system	
  funcIon	
  
evaluated	
  on	
  the	
  unit	
  circle.	
  	
  (b)	
  Principal	
  value	
  of	
  the	
  phase	
  	
  
curve	
  in	
  part	
  (a).	
  	
  (c)	
  Integer	
  mulIples	
  of	
  2π	
  to	
  be	
  added	
  to	
  
ARG[H(ejω)]	
  to	
  obtain	
  arg[H(ejω)]	
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The	
  group	
  delay	
  of	
  a	
  system	
  is	
  defined	
  as	
  
	
  	
  
	
  	
  
Note	
  that	
  except	
  for	
  values	
  of	
  	
  	
  	
  	
  	
  for	
  which	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  has	
  a	
  disconInuity,	
  
	
  
	
  
Based	
  on	
  the	
  representaIon	
  of	
  the	
  phase	
  response	
  funcIon	
  in	
  equaIon	
  5.51.	
  we	
  can	
  write	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon	
  5.52)	
  
	
  
Using	
  the	
  fact	
  that	
  	
  
	
  
	
  
and	
  taking	
  derivaIves,	
  	
  the	
  group	
  delay	
  can	
  be	
  expressed	
  as	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon	
  5.53)	
  
	
  
as	
  will	
  be	
  verified	
  later	
  in	
  this	
  unit.	
  
	
  
	
  

τ(ω) = grd[H(ejω)] = − d
dω

[arg[H(ejω)]

ω   ARG[H(ejω)]

  
d

dω
[ARG[H(ejω)] = d

dω
[arg[H(ejω)]

  
grd[H(ejω)] = d

dωk=1

N

∑ (arg[1− dke
− jω) − d

dωk=1

M

∑ (arg[1− cke
− jω)

  
arg[H(ejω) = arctan Im[H(ejω)]

Re[H(ejω)]
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

grd[H(ejω)] = | dk |2 −Re{dke
− jω}

1+ | dk |2 −2Re{dke
− jω}k=1

N

∑  −  | ck |2 −Re{cke
− jω}

1+ | ck |2 −2Re{cke
− jω}k=1

M

∑ .
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Phase	
  response	
  of	
  a	
  single	
  zero	
  or	
  pole	
  
Consider	
  the	
  phase	
  response	
  of	
  one	
  of	
  the	
  terms	
  in	
  the	
  factored	
  form	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  shown	
  in	
  equaIon	
  
5.46	
  with	
  the	
  zero	
  or	
  pole	
  represented	
  as	
  ck	
  or	
  dk	
  	
  =	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
	
  
Then	
  we	
  can	
  determine	
  the	
  group	
  delay	
  of	
  this	
  term	
  as	
  follows.	
  
	
  
	
  
	
  
	
  
	
  
Note	
  that	
  	
  
	
  
	
  
	
  
	
  

  H(ejω)

 rejθ

  arg[1− rejθe− jω] = arg[1− r cos(θ − ω) − jr sin(θ − ω)]

=  arctan −r sin(θ − ω)
1− r cos(θ − ω)
⎡

⎣
⎢

⎤

⎦
⎥   =  arctan r sin(ω − θ)

1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥ .

  
− d

dω
arctan r sin(ω − θ)

1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥

  

=  − 1

1+ r sin(ω − θ)
1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥

2 ⋅ d
dω

r sin(ω − θ)
1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥

  

d
dω

r sin(ω − θ)
1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥

  

=  
1− r cos(ω − θ)⎡⎣ ⎤⎦ r cos(ω − θ)⎡⎣ ⎤⎦ − r sin(ω − θ)⎡⎣ ⎤⎦ r sin(ω − θ)⎡⎣ ⎤⎦

1− r cos(ω − θ)⎡⎣ ⎤⎦
2

  

=  r cos(ω − θ) − r2 cos2(ω − θ) − r2 sin2(ω − θ)
1− r cos(ω − θ)⎡⎣ ⎤⎦

2

  

=  r cos(ω − θ) − r2

1− r cos(ω − θ)⎡⎣ ⎤⎦
2
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Therefore,	
  the	
  group	
  delay	
  is	
  
	
  
	
  
	
  
	
  
	
  
	
  
which	
  can	
  be	
  wrieen	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
For	
  a	
  system	
  having	
  an	
  arbitrary,	
  finite	
  number	
  of	
  poles	
  and	
  zeros,	
  the	
  above	
  results	
  for	
  the	
  
phase	
  and	
  group	
  delay	
  can	
  be	
  easily	
  extended.	
  	
  For	
  example,	
  if	
  a	
  system	
  includes	
  a	
  pair	
  of	
  
complex	
  conjugate	
  poles	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  H(z)	
  can	
  be	
  expressed	
  as	
  
	
  
	
  
Then,	
  using	
  results	
  developed	
  above,	
  the	
  phase	
  response	
  for	
  the	
  above	
  second	
  order	
  term	
  is	
  
	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon.	
  5.63b)	
  	
  
	
  
	
  
	
  

  

=  − 1

1+ r sin(ω − θ)
1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥

2  ⋅  r cos(ω − θ) − r2

1− r cos(ω − θ)⎡⎣ ⎤⎦
2

  

=  r2 − r cos(ω − θ)
1− r cos(ω − θ)⎡⎣ ⎤⎦

2
+ r2 sin2(ω − θ)

= r2 − r cos(ω − θ)
1− 2r cos(ω − θ) + r2 cos2(ω − θ) + r2 sin2(ω − θ)

= r2 − r cos(ω − θ)
1− 2r cos(ω − θ) + r2

= grd 1− rejθe− jω⎡
⎣

⎤
⎦ .

 z = rejθ  z = re− jθ

  
H(z) = 1

(1− rejθz−1)(1− re− jθz−1)

   
H(ejω) = −arctan r sin(ω − θ)

1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥ − arctan r sin(ω + θ)

1− r cos(ω + θ)
⎡

⎣
⎢

⎤

⎦
⎥
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and	
  the	
  corresponding	
  group	
  delay	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon	
  5.63c)	
  
	
  
which	
  is	
  consistent	
  with	
  equaIon	
  5.53	
  shown	
  earlier.	
  
	
  	
  
RelaIonship	
  Between	
  Magnitude	
  and	
  Phase	
  (SecIon	
  5.4)	
  
In	
  general:	
  	
  the	
  magnitude	
  response	
  and	
  the	
  phase	
  response	
  of	
  a	
  system	
  are	
  independent.	
  
	
  
For	
  a	
  raIonal	
  system:	
  	
  For	
  a	
  given	
  magnitude	
  response,	
  there	
  are	
  mulIple	
  possible	
  phase	
  
responses.	
  	
  If	
  the	
  number	
  of	
  poles	
  and	
  zeros	
  is	
  known,	
  the	
  number	
  of	
  possible	
  phase	
  responses	
  is	
  
finite.	
  	
  Otherwise,	
  it	
  is	
  infinite.	
  	
  Show	
  this:	
  
Given	
  some	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  we	
  can	
  form	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  which	
  can	
  be	
  expressed	
  as	
  
	
  
We	
  know	
  that	
  	
  
	
  	
  
Also	
  note	
  that	
  
	
  
	
  
Therefore,	
  
	
  
	
  

grd[H(ejω)] =  − r2 − r cos(ω − θ)
1+ r2 − 2r cos(ω − θ)

 −  r2 − r cos(ω + θ)
1+ r2 − 2r cos(ω + θ)

  | H(ejω) |   | H(ejω) |2

| H(ejω) |2= H(ejω) H*(ejω).

  
H(ejω) = H z( )

z=ejω

H* 1
z*

⎛

⎝⎜
⎞

⎠⎟ z=ejω

= H* 1
e− jω

⎛

⎝⎜
⎞

⎠⎟
= H*(ejω).

| H(ejω) |2= H(z)H* 1
z*

⎛

⎝⎜
⎞

⎠⎟ z=ejω

.
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Recall	
  that	
  the	
  factored	
  form	
  for	
  H(z)	
  when	
  H(z)	
  is	
  a	
  raIonal	
  system	
  funcIon:	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon	
  5.69)	
  
	
  
Note	
  that	
  for	
  the	
  above	
  H(z)	
  we	
  can	
  write	
  
	
  
	
  
	
  
and,	
  assuming	
  that	
  b0	
  and	
  a0	
  are	
  real-­‐valued,	
  	
  	
  
	
  	
  
	
  
	
  
Now	
  define	
  a	
  new	
  term:	
  
	
  
	
  
Then	
  we	
  can	
  write:	
  
	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equaIon	
  5.72)	
  
	
  

H(z) =
b0

a0

⎛

⎝
⎜

⎞

⎠
⎟

(1− ckz
−1)

k=1

M

∏

(1− dkz
−1)

k=1

N

∏
.

  

H 1
z*

⎛

⎝⎜
⎞

⎠⎟
=

b0

a0

⎛

⎝
⎜

⎞

⎠
⎟

(1− ckz
*)

k=1

M

∏

(1− dkz
*)

k=1

N

∏

H* 1
z*

⎛

⎝⎜
⎞

⎠⎟
=

b0

a0

⎛

⎝
⎜

⎞

⎠
⎟

(1− ck
*z)

k=1

M

∏

(1− dk
*z)

k=1

N

∏
.

C(z) = H(z)H* 1
z*

⎛

⎝⎜
⎞

⎠⎟
.

  

C(z) = H*(z)H 1
z*

⎛

⎝⎜
⎞

⎠⎟
=

b0

a0

⎛

⎝
⎜

⎞

⎠
⎟

2 1− ckz
−1( ) 1− ck

*z( )
k=1

M

∏

1− dkz
−1( ) 1− dk

*z( )
k=1

N

∏
.
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From	
  the	
  above	
  expression	
  we	
  see	
  that	
  C(z)	
  has	
  a	
  zero	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  also	
  has	
  a	
  zero	
  at	
  
	
  
	
  
Likewise,	
  C(z)	
  has	
  a	
  pole	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  also	
  has	
  a	
  pole	
  at	
  
	
  
	
  
Consider	
  a	
  zero	
  represented	
  as	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  r	
  <	
  1.	
  	
  	
  
Then	
  	
  	
  	
  	
  	
  
	
  
	
  
Therefore,	
  a	
  zero	
  of	
  C(z)	
  inside	
  the	
  unit	
  circle	
  at	
  	
  	
  	
  	
  also	
  has	
  a	
  "companion"	
  zero	
  outside	
  the	
  unit	
  
circle	
  at	
  	
  	
  	
  	
  .	
  	
  The	
  same	
  is	
  true	
  for	
  poles	
  of	
  C(z).	
  
	
  	
  
For	
  a	
  stable	
  system,	
  the	
  poles	
  of	
  C(z)	
  inside	
  the	
  unit	
  circle	
  must	
  belong	
  to	
  H(z).	
  	
  However,	
  either	
  
member	
  of	
  a	
  "zero-­‐pair"	
  of	
  C(z)	
  could	
  be	
  assigned	
  to	
  H(z)	
  and	
  the	
  other	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  (Both	
  opIons	
  
have	
  the	
  same	
  magnitude-­‐squared	
  frequency	
  response	
  funcIon.)	
  
	
  
	
  
	
  

 z = ck

z = 1
ck

*

⎛

⎝
⎜

⎞

⎠
⎟ .

 z = dk

z = 1
dk

*

⎛

⎝
⎜

⎞

⎠
⎟ .

 ck = rejθ

1
ck

* = 1
re− jθ = 1

r
ejθ.

 ck

  

1
ck

*

  
H* 1

z*

⎛

⎝⎜
⎞

⎠⎟
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Figure	
  5.16	
  Pole-­‐zero	
  plots	
  for	
  two	
  system	
  funcIons	
  and	
  their	
  common	
  magnitude	
  
Squared	
  funcIon.	
  (a)	
  H1(z),	
  (b)	
  H2(z),	
  and	
  (c)	
  C(z)	
  =	
  C1(z)=	
  C2(z)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

(c)	
  C(z)	
  =	
  C1(z)	
  =	
  C2(z)	
  	
  	
  

15	
  Example	
  5.9	
  
The	
  following	
  figures	
  show	
  the	
  poles	
  and	
  zeros	
  of	
  two	
  systems,	
  H1(z)	
  and	
  H2(z),	
  which	
  have	
  the	
  
same	
  C(z):	
  

(a)	
   (b)	
  



Example	
  5.10	
  from	
  text	
  	
  
The	
  C(z)	
  for	
  this	
  example	
  includes	
  2	
  pairs	
  of	
  complex-­‐conjugate	
  zeros	
  and	
  1	
  pair	
  of	
  real	
  zeros.	
  	
  (It	
  
also	
  includes	
  3	
  pole-­‐pairs.)	
  	
  There	
  are	
  4	
  different	
  stable,	
  causal	
  H(z)	
  funcIons	
  which	
  would	
  have	
  
the	
  same	
  C(z)	
  funcIon,	
  assuming	
  that	
  h(n)	
  must	
  be	
  real-­‐valued	
  (and	
  the	
  coefficients	
  of	
  the	
  
implemenIng	
  difference	
  equaIon	
  must	
  be	
  real-­‐valued).	
  	
  The	
  4	
  opIons	
  are	
  shown	
  below:	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Zeros	
  of	
  H(z) 	
  	
  	
  	
  	
  	
  	
  Zeros	
  of	
  H*(1/z*)	
  
OpIon	
  1: 	
  	
  	
  	
  	
  	
  	
  z1,	
  z2,	
  z3 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  z4,	
  z5,	
  z6	
  
OpIon	
  2: 	
  	
  	
  	
  	
  	
  	
  z1,	
  z2,	
  z6 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  z4,	
  z5,	
  z3	
  
OpIon	
  3: 	
  	
  	
  	
  	
  	
  	
  z4,	
  z5,	
  z3 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  z1,	
  z2,	
  z6	
  
OpIon	
  4: 	
  	
  	
  	
  	
  	
  	
  z4,	
  z5,	
  z6 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  z1,	
  z2,	
  z3	
  
	
  
	
  

Figure	
  5.17	
  	
  Pole-­‐zero	
  plot	
  for	
  the	
  magnitude-­‐squared	
  funcIon	
  in	
  Example	
  5.10	
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If	
  h(n)	
  is	
  not	
  constrained	
  to	
  be	
  real,	
  then	
  there	
  would	
  be	
  8	
  possibiliIes	
  for	
  H(z)	
  that	
  would	
  all	
  
have	
  the	
  same	
  C(z)	
  funcIon.	
  	
  There	
  are	
  shown	
  below:	
  

	
   	
  	
  	
  	
  	
  Zeros	
  of	
  H(z)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Zeros	
  of	
  H*(1/z*)	
  
OpIon	
  1: 	
  	
  	
  	
  	
  	
  	
  z1,	
  z2,	
  z3 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  z4,	
  z5,	
  z6	
  	
  
OpIon	
  2: 	
  	
  	
  	
  	
  	
  	
  z1,	
  z2,	
  z6 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  z4,	
  z5,	
  z3	
  
OpIon	
  3: 	
  	
  	
  	
  	
  	
  	
  z4,	
  z5,	
  z3 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  z1,	
  z2,	
  z6	
  	
  
OpIon	
  4: 	
  	
  	
  	
  	
  	
  	
  z4,	
  z5,	
  z6 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  z1,	
  z2,	
  z3	
  
	
  	
  
OpIon	
  5: 	
  	
  	
  	
  	
  	
  	
  z1,	
  z5,	
  z3 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  z4,	
  z2,	
  z6	
  
OpIon	
  6: 	
  	
  	
  	
  	
  	
  	
  z1,	
  z5,	
  z6 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  z4,	
  z2,	
  z3	
  
OpIon	
  7: 	
  	
  	
  	
  	
  	
  	
  z4,	
  z2,	
  z3 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  z1,	
  z5,	
  z6	
  
OpIon	
  8: 	
  	
  	
  	
  	
  	
  	
  z4,	
  z2,	
  z6 	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  z1,	
  z5,	
  z3	
  
	
  

Note:	
  	
  If	
  the	
  number	
  of	
  poles	
  and	
  zeros	
  is	
  not	
  restricted,	
  then	
  an	
  infinite	
  number	
  of	
  versions	
  of	
  	
  	
  
H(z)	
  can	
  have	
  the	
  same	
  C(z).	
  	
  This	
  is	
  because	
  one	
  or	
  more	
  all-­‐pass	
  filters	
  can	
  be	
  cascaded	
  with	
  the	
  
other	
  poles	
  and	
  zeros	
  of	
  H(z),	
  without	
  changing	
  C(z),	
  as	
  will	
  be	
  shown	
  in	
  the	
  next	
  unit.	
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