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All-­‐Pass	
  Filters	
  
Consider	
  a	
  filter	
  with	
  the	
  following	
  system	
  func:on:	
  	
   	
  	
  
	
  
	
  
Show	
  that	
  this	
  is	
  an	
  all-­‐pass	
  filter:	
  
	
  	
  
	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.81)	
  
	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  the	
  other	
  term	
  is	
  a	
  ra:o	
  of	
  complex	
  conjugates,	
  the	
  overall	
  magnitude	
  is	
  1	
  for	
  
all	
  	
  	
  	
  	
  .	
  Nota:on:	
  	
  We	
  will	
  use	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  represent	
  an	
  all-­‐pass	
  filter.	
  
	
  
Now	
  show	
  that	
  cascading	
  an	
  all-­‐pass	
  filter	
  to	
  another	
  filter	
  doesn't	
  change	
  the	
  C(z)	
  of	
  the	
  other	
  
filter,	
  as	
  shown	
  below:	
  
Since	
  H(z)	
  for	
  a	
  first-­‐order	
  all-­‐pass	
  filter	
  has	
  the	
  form	
  
	
  
	
  
	
  
	
  

H(z) =  z−1 − a*

1− az−1 .

  
H(ejω) =  z−1 − a*

1− az−1
z=ejω

=   e− jω − a*

1− ae− jω

=   e− jω 1− a*ejω

1− ae− jω
⎛

⎝
⎜

⎞

⎠
⎟ .

  |e− jω |= 1
ω

Hap(z) =  z−1− a*

1− az−1 .

  Hap(z)
  Hap(e

jω)
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The	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
	
  
	
  
	
  
	
  
Taking	
  the	
  complex	
  conjugate	
  of	
  the	
  above	
  gives	
  
	
  
	
  
Therefore,	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
Other	
  Proper:es	
  of	
  All-­‐Pass	
  Filters	
  
"Companion	
  Zero"	
  Property	
  
If	
  Hap(z)	
  has	
  a	
  pole	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  
it	
  also	
  has	
  a	
  zero	
  at	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (same	
  angle	
  as	
  pole;	
  reciprocal	
  magnitude)	
  	
  
	
  
	
  
	
  
	
  

  
Hap(

1
z* )

Hap(
1
z* )  =   

1
z*

⎛

⎝⎜
⎞

⎠⎟

−1

− a*

1− a 1
z*

⎛

⎝⎜
⎞

⎠⎟

−1   =   z* − a*

1− az* .

Hap
* ( 1

z* )  =   z − a
1− a*z

.

 
Hap(z)Hap

* ( 1
z* )  =   C(z)  =  z−1 − a*

1− az−1
⎛

⎝⎜
⎞

⎠⎟
z − a

1− a*z
⎛

⎝⎜
⎞

⎠⎟
  

=   1− a*z
z − a

⎛

⎝
⎜

⎞

⎠
⎟

z − a
1− a*z
⎛

⎝⎜
⎞

⎠⎟
 = 1.

 z = a = rejθ

z = 1
a * = 1

[rejθ] *
= 1
re− jθ = 1

r e
jθ.
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Phase	
  of	
  a	
  First	
  Order	
  All-­‐Pass	
  Filter	
  
Star:ng	
  with	
  expression	
  (eqn.5.81)	
  for	
  a	
  first-­‐order	
  all-­‐pass	
  filter:	
  
	
  
	
  
and	
  represen:ng	
  the	
  pole	
  loca:on	
  a	
  as	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  we	
  can	
  write	
  an	
  expression	
  for	
  the	
  phase:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.83)	
  	
  
	
  
Group	
  Delay	
  of	
  a	
  First-­‐Order	
  All-­‐Pass	
  Filter	
  
The	
  group	
  delay	
  of	
  a	
  first	
  order	
  all-­‐pass	
  filter	
  is	
  defined	
  as	
  the	
  nega:ve	
  of	
  the	
  deriva:ve	
  of	
  the	
  
phase:	
  
	
  
	
  

 
Hap(e

jω ) =  e− jω 1− a*ejω

1− ae− jω
⎛

⎝⎜
⎞

⎠⎟

 a = rejθ

   
 e− jω 1− re− jθejω

1− rejθe− jω
⎛

⎝
⎜

⎞

⎠
⎟ = −ω + (1− re− jθejω) - (1− rejθe− jω) 

  = −ω + (1− rej(ω−θ)) −  (1− rej(θ−ω)) 

   = −ω +  1− r cos(ω − θ) − jr sin(ω − θ)( ) −  1− r cos(θ − ω) − jr sin(θ − ω)( )   

   = −ω +  1− r cos(ω − θ) − jr sin(ω − θ)( ) −  1− r cos(ω − θ) + jr sin(ω − θ)( )   

  
= −ω + arctan −r sin(ω − θ)

1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥ − arctan r sin(ω − θ)

1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥   

= −ω − 2arctan r sin(ω − θ)
1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥ .

grd Hap(e
jω) = − d

dω
−ω − 2arctan r sin(ω − θ)

1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Evaluate	
  the	
  deriva:ve:	
  
	
  
	
  
Therefore,	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (see	
  eqn.	
  5.85)	
  	
  
	
  

  
= d

dω
ω + 2arctan r sin(ω − θ)

1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= 1+ 2 1

1+ r sin(ω − θ)
1− r cos(ω − θ)
⎛

⎝⎜
⎞

⎠⎟

2
d

dω
r sin(ω − θ)

1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥ .

d
dω

r sin(ω − θ)
1− r cos(ω − θ)
⎡

⎣
⎢

⎤

⎦
⎥ =

1− r cos(ω − θ)( )r cos(ω − θ) − r sin(ω − θ)( )r sin(ω − θ)

1− r cos(ω − θ)( )2
.

  
grd Hap(e

jω) = 1+ 2 r cos(ω − θ) − r2 cos2(ω − θ) − r2 sin2(ω − θ)
(1− r cos(ω − θ))2 + r2 sin2(ω − θ)

  
= 1+ 2 r cos(ω − θ) − r2

1− 2r cos(ω − θ) + r2 cos2(ω − θ) + r2 sin2(ω − θ)

  
= 1+ 2 r cos(ω − θ) − r2

1− 2r cos(ω − θ) + r2

  
= 1− 2r cos(ω − θ) + r2 + 2r cos(ω − θ) − 2r2

1− 2r cos(ω − θ) + r2

= 1− r2

1− 2r cos(ω − θ) + r2 = 1− r2

| 1− rejωe− jθ |2
= grd Hap(e

jω).
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Note:	
  	
  Since	
  r	
  <	
  1	
  for	
  a	
  stable	
  and	
  	
  causal	
  system,	
  the	
  numerator	
  of	
  the	
  above	
  equa:on	
  is	
  always	
  
posi:ve,	
  as	
  is	
  the	
  denominator.	
  	
  Therefore,	
  the	
  group	
  delay	
  of	
  a	
  first-­‐order	
  all-­‐pass	
  filter	
  is	
  always	
  
posi:ve.	
  
	
  
Note:	
  The	
  group	
  delay	
  for	
  higher	
  order	
  all-­‐pass	
  filters	
  will	
  also	
  be	
  posi:ve,	
  since	
  a	
  higher	
  order	
  
all-­‐pass	
  filter	
  can	
  be	
  represented	
  as	
  a	
  cascade	
  of	
  first-­‐order	
  all-­‐pass	
  filters,	
  for	
  which	
  the	
  phase	
  
and	
  group	
  delays	
  add.	
  
	
  
Since	
  the	
  group	
  delay	
  is	
  defined	
  as	
  the	
  nega:ve	
  of	
  the	
  deriva:ve	
  of	
  the	
  phase,	
  the	
  phase	
  of	
  an	
  
all-­‐pass	
  filter	
  could	
  be	
  determined	
  from	
  group	
  delay	
  as:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.86)	
  
	
  
Higher	
  Order	
  All-­‐Pass	
  Filters	
  
The	
  expression	
  for	
  an	
  all-­‐pass	
  having	
  an	
  arbitrary	
  finite	
  number	
  of	
  poles	
  and	
  zeros	
  is	
  
	
  
	
  
where	
  the	
  	
  	
  	
  	
  	
  	
  	
  are	
  loca:ons	
  of	
  the	
  real	
  poles	
  and	
  the	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  are	
  loca:ons	
  of	
  the	
  complex	
  
poles.	
  
	
  
	
  
	
  

  
arg[Hap(ejω)] = − grd[

0

ω

∫ Hap(e
jφ)]dφ + arg[Hap(e

j0)] 0 ≤ω ≤ π

 
Hap(z) = A

z−1 − dk

1− dkz
−1

k=1

Mr

∏
(z−1 − ek

* )
(1− ekz

−1)k=1

Mc

∏
(z−1 − ek )
(1− ek

*z−1)

 {dk}  {ek}  {ek
*}
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From	
  the	
  previous	
  expression	
  	
  we	
  can	
  evaluate	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  an	
  all-­‐pass	
  filter	
  having	
  an	
  arbitrary	
  
order	
  as	
  
	
  
	
  
Therefore,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (assuming	
  that	
  A	
  is	
  real	
  and	
  posi:ve)	
  
	
  
By	
  using	
  this	
  result	
  and	
  the	
  result	
  of	
  equa:on	
  5.85	
  (that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  
in	
  equa:on	
  5.86,	
  we	
  can	
  obtain	
  an	
  important	
  result:	
  	
  the	
  phase	
  of	
  a	
  stable,	
  causal	
  all-­‐pass	
  filter	
  is	
  
non-­‐posi:ve	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  i.e,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.89)	
  	
  
	
  	
  
Minimum	
  Phase	
  Systems	
  (Sec8on	
  5.6)	
  
A	
  minimum	
  phase	
  system	
  is	
  defined	
  as	
  a	
  system	
  that	
  has	
  all	
  its	
  poles	
  and	
  zeros	
  inside	
  the	
  unit	
  
circle	
  in	
  the	
  z-­‐plane.	
  	
  For	
  a	
  given	
  magnitude	
  response,	
  the	
  minimum	
  phase	
  filter	
  is	
  one	
  of	
  
mul:ple	
  possible	
  filters	
  which	
  have	
  this	
  common	
  magnitude	
  response.	
  	
  (As	
  will	
  be	
  shown,	
  the	
  
“minimum	
  phase”	
  filter	
  actually	
  has	
  maximum	
  phase	
  among	
  the	
  group	
  of	
  filters	
  that	
  have	
  the	
  
same	
  magnitude	
  response.	
  	
  The	
  so-­‐called	
  minimum	
  phase	
  filter	
  actually	
  has	
  “minimum	
  phase	
  
delay,”	
  as	
  discussed	
  later.)	
  
	
  
	
  
	
  
	
  
	
  

  Hap(e
j0)

Hap(e
j0) = Hap(z) z=1

= A
1− dk

1− dkk=1

Mr

∏
(1− ek

* )
(1− ek)k=1

Mc

∏
(1− ek)
(1− ek

* )
= A.

argHap(e
j0) = arg(A) = 0.

 grd[Hap(e
jω )] ≥ 0

0 ≤ω ≤ π

arg[Hap(e
jω)] ≤ 0. 0 ≤ω ≤ π
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Any	
  ra:onal	
  H(z)	
  can	
  be	
  expressed	
  as	
  a	
  product	
  of	
  (a)	
  a	
  minimum	
  phase	
  system	
  func:on	
  that	
  	
  	
  	
  
has	
  the	
  same	
  magnitude	
  response	
  and	
  (b)	
  one	
  or	
  more	
  all-­‐pass	
  filters.	
  That	
  is,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.90)	
  
Show	
  this:	
  
Assume	
  that	
  a	
  stable	
  H(z)	
  has	
  a	
  single	
  zero	
  outside	
  the	
  unit	
  circle	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
and	
  r	
  <	
  1.	
  	
  The	
  loca:on	
  of	
  this	
  zero	
  can	
  be	
  expressed	
  in	
  polar	
  form	
  as	
  
	
  
	
  
H(z)	
  can	
  be	
  wricen	
  as	
  
	
  
where	
  H1(z)	
  has	
  all	
  its	
  zeros	
  inside	
  the	
  unit	
  circle.	
  
Now	
  mul:ply	
  and	
  divide	
  the	
  above	
  expression	
  by	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
The	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  term	
  in	
  the	
  numerator	
  represents	
  a	
  zero	
  at	
  z	
  =	
  c,	
  which	
  is	
  inside	
  the	
  unit	
  circle	
  since	
  
we	
  s:pulated	
  that	
  r	
  <	
  1.	
  	
  	
  
We	
  also	
  recognize	
  the	
  term	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  be	
  an	
  all-­‐pass	
  filter.	
  
	
  
Therefore,	
  we	
  can	
  write	
  	
  

	
   	
   	
   	
   	
  (equa:on	
  5.93)	
  
	
  

H(z) = Hmin(z)Hap(z).

 
z = 1

c *  c = rejθ

1
re− jθ = 1

r e
jθ.

 H(z) = H1(z)(z−1 − c* )

  (1− cz−1)

H(z) = H1(z)(1− cz−1)(z
−1 − c*)

(1− cz−1)
.

  (1− cz−1)

 
(z−1 − c* )
(1− cz−1)

 H(z) = Hmin(z)Hap(z)
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where	
  for	
  this	
  example	
  
	
  	
  
Equa:on	
  5.93	
  is	
  a	
  general	
  result,	
  where	
  Hmin(z)	
  contains	
  the	
  original	
  poles	
  of	
  H(z),	
  the	
  original	
  
zeros	
  of	
  H(z)	
  that	
  are	
  inside	
  the	
  unit	
  circle,	
  and	
  new	
  zeros	
  that	
  are	
  conjugate	
  reciprocals	
  
(reciprocal	
  radius,	
  same	
  angle)	
  of	
  any	
  original	
  zeros	
  of	
  H(z)	
  which	
  are	
  outside	
  the	
  unit	
  circle.	
  	
  
	
  
	
  Hap(z)	
  consists	
  of	
  any	
  original	
  zeros	
  of	
  H(z)	
  that	
  are	
  outside	
  the	
  unit	
  circle	
  as	
  well	
  as	
  new	
  poles	
  at	
  
the	
  same	
  loca:ons	
  as	
  those	
  of	
  the	
  new	
  zeros	
  that	
  were	
  assigned	
  to	
  Hmin(z).	
  
	
  
Proper:es	
  of	
  	
  Minimum	
  Phase	
  Systems	
  
Minimum	
  Phase-­‐Lag	
  
"Minimum	
  phase"	
  systems	
  actually	
  have	
  maximum	
  phase.	
  	
  (What	
  they	
  have	
  is	
  	
  minimum	
  phase	
  
lag,	
  where	
  phase-­‐lag	
  is	
  defined	
  as	
  the	
  nega:ve	
  of	
  the	
  phase.)	
  	
  This	
  is	
  shown	
  below:	
  
	
  	
  
Since	
  we	
  have	
  seen	
  that	
  any	
  ra:onal	
  system	
  func:on	
  H(z)	
  can	
  be	
  expressed	
  as	
  the	
  product	
  of	
  a	
  
minimum	
  phase	
  system	
  Hmin(z)	
  and	
  an	
  all-­‐pass	
  system	
  Hap(z),	
  the	
  corresponding	
  phase	
  rela:on	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.101)	
  	
  
	
  
Consider	
  the	
  system	
  version	
  which	
  has	
  all	
  its	
  zeros	
  inside	
  the	
  unit	
  circle.	
  	
  (This	
  is	
  the	
  minimum	
  
phase	
  version.)	
  	
  Any	
  other	
  system	
  having	
  the	
  same	
  magnitude	
  response	
  can	
  be	
  obtained	
  by	
  
cascading	
  one	
  or	
  more	
  all-­‐pass	
  filters,	
  and	
  we	
  have	
  shown	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  nega:ve	
  for	
  

Hmin(z) = H1(z)(1− cz−1).

arg[H(ejω)] = arg[Hmin(e
jω)] + arg[Hap(e

jω)].

 arg[Hap(e
jω )] 0 ≤ω ≤ π.
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Therefore,	
  the	
  "minimum	
  phase"	
  version	
  of	
  the	
  system	
  actually	
  has	
  the	
  maximum	
  phase	
  	
  	
  
func:on	
  (and	
  the	
  minimum	
  phase-­‐lag)	
  	
  
	
  
Minimum	
  Group	
  Delay	
  Property	
  
The	
  group	
  delay	
  for	
  a	
  ra:onal	
  system	
  can	
  be	
  expressed	
  as	
  
	
  
We	
  have	
  also	
  seen	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  always	
  posi:ve.	
  
Therefore,	
  the	
  minimum	
  phase	
  version	
  of	
  a	
  system	
  has	
  the	
  minimum	
  group	
  delay.	
  

Minimum	
  Energy	
  Delay	
  	
  
Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  represent	
  the	
  unit	
  sample	
  response	
  of	
  the	
  minimum	
  phase	
  version	
  of	
  a	
  system	
  and	
  let	
  
h(n)	
  represent	
  the	
  unit	
  sample	
  response	
  of	
  any	
  other	
  version	
  of	
  the	
  system	
  (which	
  has	
  the	
  same	
  
magnitude	
  frequency	
  response).	
  
Then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.108)	
  
	
  

grd[H(ejω)] = grd[Hmin(e
jω)] + grd[Hap(e

jω)].

 grd[Hap(e
jω )]

 hmin(n)

| h(n) |2
n=−∞

n
∑ ≤ | hmin(n) |2

n=−∞

n
∑ .
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Consider	
  the	
  pole-­‐zero	
  plots	
  for	
  4	
  systems	
  which	
  have	
  the	
  same	
  magnitude	
  response:	
  

Figure	
  5.27	
  Four	
  systems	
  all	
  having	
  the	
  same	
  frequency	
  
response	
  magnitude.	
  	
  Zeros	
  are	
  at	
  all	
  combina:ons	
  of	
  	
  	
  

 0.9e± j0.6π and	
    0.8e± j0.8π and	
  their	
  reciprocals.	
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minimum	
  phase	
  case	
  

Figure	
  5.28	
  Sequences	
  corresponding	
  to	
  
pole-­‐zero	
  plots	
  of	
  Figure	
  5.27	
  

11	
  

The	
  summa:ons	
  in	
  equa:on	
  
5.108	
  are	
  called	
  the	
  par:al	
  
energy	
  of	
  h(n)	
  and	
  hmin(n).	
  	
  

Note	
  that	
  due	
  to	
  Parseval's	
  
Theorem,	
  	
  

| h(n) |2
n=−∞

∞

∑ = | hmin(n) |2
n=−∞

∞

∑ .



A	
  plot	
  the	
  par:al	
  energies	
  for	
  the	
  previous	
  example	
  is	
  shown	
  below:	
  
	
  

Figure	
  5.29	
  	
  Par:al	
  energies	
  for	
  the	
  four	
  sequences	
  of	
  Figure	
  5.28.	
  	
  (Note	
  that	
  
Ea(n)	
  is	
  for	
  the	
  	
  minimum	
  phase	
  sequence	
  ha(n)	
  and	
  Eb(n)	
  is	
  for	
  the	
  maximum	
  
Phase	
  sequence	
  hb(n).	
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Linear	
  Phase	
  
A	
  system	
  has	
  linear	
  phase	
  if	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  	
  	
  	
  	
  is	
  a	
  real	
  constant.	
  
For	
  the	
  case	
  of	
  linear	
  phase	
  
	
  
If	
  the	
  input	
  to	
  a	
  linear	
  :me-­‐invariant	
  system	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  output	
  is	
  
	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  

If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  has	
  linear	
  phase	
  =	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  has	
  magnitude	
  response	
  =	
  1	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  then	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  where	
  the	
  delay	
  	
  	
  	
  	
  is	
  independent	
  of	
  frequency.	
  
	
  
More	
  generally,	
  if	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  over	
  the	
  en:re	
  frequency	
  range	
  of	
  an	
  input	
  x(n),	
  and	
  if	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
the	
  system	
  output	
  is	
  
	
  
Therefore,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
	
  
	
  

   H(ejω ) = −αω α

 H(ejω ) =| H(ejω ) | e− jαω

 x(n) = ejω0n

 
y(n) = h(k)

k=−∞

∞

∑ x(n − k) = h(k)
k=−∞

∞

∑ ejω0(n−k)

= ejω
0
n h(k)

k=−∞

∞

∑ e− jω0k = ejω
0
n H(ejω)

ω=ω
0

 H(ejω ) −αω  ω = ω0

 y(n) = ejω0n ⋅1⋅ e− jαω0 = ejω0(n−α)

  = x(n − α) α

 | H(ejω ) |= 1  arg[H(ejω )] = −αω

Y(ejω) = X(ejω)H(ejω) = X(ejω) ⋅1⋅ e− jαω = X(ejω)e− jαω .

  y(n) = x(n − α)
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In	
  the	
  case	
  of	
  linear	
  phase,	
  the	
  only	
  effect	
  of	
  the	
  phase	
  response	
  is	
  a	
  pure	
  :me	
  delay,	
  and	
  	
  	
  	
  	
  	
  
since	
  this	
  delay	
  is	
  independent	
  frequency,	
  there	
  is	
  no	
  phase	
  distor:on	
  due	
  to	
  some	
  frequency	
  
component	
  of	
  the	
  input	
  being	
  delays	
  more	
  than	
  others.	
  
	
  
Note	
  that	
  the	
  group	
  delay	
  of	
  a	
  system	
  that	
  has	
  linear	
  phase	
  is	
  
	
  
	
  
Generalized	
  Linear	
  Phase	
  
If	
  a	
  system	
  does	
  not	
  strictly	
  sa:sfy	
  the	
  requirements	
  for	
  linear	
  phase,	
  it	
  may	
  s:ll	
  sa:sfy	
  the	
  
requirements	
  for	
  what	
  is	
  called	
  generalized	
  linear	
  phase.	
  	
  A	
  system	
  has	
  generalized	
  linear	
  phase	
  if	
  
its	
  frequency	
  response	
  func:on	
  has	
  the	
  form	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  real,	
  but	
  may	
  be	
  nega:ve	
  (and	
  therefore	
  contribute	
  π	
  to	
  the	
  phase)	
  
If	
  we	
  ignore	
  discon:nui:es	
  due	
  to	
  the	
  phase	
  contribu:ons	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  phase	
  is	
  a	
  linear	
  func:on	
  
of	
  	
  	
  	
  :	
  
	
  
and	
  the	
  group	
  delay	
  is	
  a	
  constant,	
  	
  	
  	
  	
  .	
  
	
  

grd[H(ejω)] = − d
dω

arg[H(ejω){ } = α = constant.

 H(ejω ) = A(ejω )e− jαω+ jβ

 A(ejω )

 A(ejω )
ω

−αω + β

α

14	
  



Symmetry	
  Condi:ons	
  Associated	
  with	
  Generalize	
  Linear	
  Phase	
  
As	
  discussed	
  above,	
  the	
  frequency	
  response	
  for	
  a	
  system	
  having	
  generalized	
  linear	
  can	
  be	
  wricen	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
  (equa:on	
  5.125)	
  
	
  	
  
In	
  general,	
  any	
  frequency	
  response	
  func:on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  also	
  be	
  wricen	
  as	
  
	
  
	
  
	
  
We	
  can	
  now	
  use	
  each	
  of	
  the	
  above	
  expressions	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  obtain	
  two	
  expressions	
  for	
  the	
  
tangent	
  of	
  the	
  phase	
  angle	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  The	
  first	
  expression	
  is	
  
	
  
	
  
The	
  other	
  is	
  
	
  
	
  
	
  
Sejng	
  these	
  equal	
  to	
  each	
  other	
  gives:	
  
	
  
	
  

H(ejω) = A(ejω)e− jαω+ jβ

= A(ejω)cos(β − αω) + jA(ejω)sin(β − αω).

 H(ejω )

 
H(ejω ) = h(n)e− jωn

n=−∞

∞

∑

= h(n)cos(ωn) − j
n=−∞

∞

∑ h(n)sin(ωn)
n=−∞

∞

∑ .

 H(ejω )
 H(ejω )

tan(phase angle of H(ejω) ) = A(ejω)sin(β − ωα)
A(ejω)cos(β − ωα)

 = sin(β − ωα)
cos(β − ωα)

.

tan(phase angle of H(ejω) ) =  
− h(n)sin(ωn)

n=−∞

∞

∑

h(n)cos(ωn)
n=−∞

∞

∑
.

sin(β − ωα)
cos(β − ωα)

 =  
− h(n)sin(ωn)

n=−∞

∞

∑

h(n)cos(ωn)
n=−∞

∞

∑
.
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Cross-­‐mul:plying	
  the	
  above	
  equa:on	
  gives:	
  
	
  
	
  
	
  
	
  
Now	
  apply	
  the	
  trig	
  iden:ty:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  	
  both	
  sides	
  of	
  the	
  above	
  
equa:on	
  gives:	
  
	
  

	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
which	
  can	
  also	
  be	
  wricen	
  as:	
  
	
  
	
  
The	
  second	
  and	
  fourth	
  terms	
  cancel	
  and	
  the	
  first	
  and	
  third	
  terms	
  are	
  the	
  same,	
  	
  leaving	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.130)	
  
	
  
Consider	
  the	
  case	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  or	
  π.	
  	
  In	
  this	
  case,	
  the	
  above	
  becomes:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.132)	
  
	
  
	
  	
  

 
sin(β − ωα) h(n)cos(ωn) =

n=−∞

∞

∑ − cos(β − ωα) h(n)sin(ωn
n=−∞

∞

∑ )

h(n)cos(ωn)sin(β − ωα) =
n=−∞

∞

∑ − h(n)sin(ωn
n=−∞

∞

∑ )cos(β − ωα).

  
sin(a)cos(b) = 1

2
[sin(a + b)+ sin(a − b)]

 
h(n) 1

2 sin(β − ωα + ωn) + sin(β − ωα − ωn)⎡⎣ ⎤⎦  =
n=−∞

∞

∑ − h(n) 1
2 sin(ωn + β − ωα) + sin(ωn − β + ωα)⎡⎣ ⎤⎦

n=−∞

∞

∑

h(n) sin[β + ω(n − α)] + sin[β − ω(n + α)] +⎡⎣
n=−∞

∞

∑ sin[β + ω(n − α)]+ sin[−β + ω(n + α)]⎤⎦ = 0.

h(n) sin[(β + ω(n − α))] = 0⎡⎣
n=−∞

∞

∑ .

 β = 0

h(n) sin[ω(n − α))] = 0⎡⎣
n=−∞

∞

∑ .
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If	
  we	
  also	
  assume	
  that	
  	
  	
  	
  	
  	
  is	
  an	
  integer,	
  the	
  above	
  summa:on	
  can	
  be	
  wricen:	
  
	
  
	
  
Now	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
When	
  	
  
When	
  	
  
The	
  above	
  summa:on	
  can	
  therefore	
  can	
  wricen	
  as:	
  
	
  
	
  
	
  
	
  
The	
  above	
  equa:on	
  will	
  be	
  sa:sfied	
  if	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  all	
  m.	
  
Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  Then	
  we	
  can	
  write	
  the	
  above	
  condi:on	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  all	
  n.	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.131c)	
  
	
  
	
  
	
  
	
  

α

h(n) sin[ω(n − α)] + 0 +⎡⎣
n=−∞

α−1
∑ h(n) sin[ω(n − α)] = 0⎡⎣

n=α+1

∞

∑ .

m = n − α.
n = α −1,   m = (α −1) − α = −1.
n = α +1,   m = (α +1) − α = 1.

 
h(m + α)sin(ωm) +

m=−∞

−1
∑ h(m + α)sin(ωm) = 0

m=1

∞

∑

= sin(ωm) h(m + α) − h(−m + α)⎡⎣ ⎤⎦ = 0
m=1

∞

∑ .

  h(m + α) = h(−m + α)

 n = m + α

  h(n) = h(2α − n)

  h(α +1) = h(α −1),h(α + 2) = h(α − 2),h(α + 3) = h(α − 3),etc.
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Now	
  consider	
  the	
  case	
  of	
  	
  	
  	
  	
  =	
  integer	
  +	
  (1/2).	
  	
  	
  	
  (We	
  are	
  s:ll	
  considering	
  the	
  case	
  where	
  	
  	
  	
  =	
  0	
  or	
  
π.	
  )	
  The	
  condi:on	
  that	
  must	
  be	
  sa:sfied	
  in	
  order	
  to	
  have	
  generalized	
  linear	
  phase	
  is	
  again	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (Recall	
  equa:on	
  5.132)	
  
	
  	
  
Now	
  write	
  the	
  previous	
  summa:on	
  as	
  

Now	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  the	
  first	
  summa:on	
  above.	
  
When	
  	
  
	
  
	
  
	
  
Now	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  the	
  second	
  summa:on	
  above.	
  
When	
  	
  
	
  
	
  
Therefore,	
  the	
  condi:on	
  for	
  generalized	
  linear	
  phase	
  becomes	
  
	
  

α β

h(n) sin[ω(n − α))]⎡⎣ ⎤⎦
n=−∞

∞

∑ = 0.

h(n) sin[ω(n − α)]⎡⎣ ⎤⎦
n=−∞

α−12
∑ + h(n)

n=α+12

∞

∑ sin[ω(n − α)]⎡⎣ ⎤⎦ = 0.

 
m = n − α − 1

2
n = α − 1

2
,

m = α − 1
2

⎛

⎝⎜
⎞

⎠⎟
− α − 1

2
= −1.

 
m = n − α + 1

2
 
n = α + 1

2
m = α + 1

2
⎛

⎝⎜
⎞

⎠⎟
− α + 1

2
= 1.

h m + α + 1
2

⎛

⎝⎜
⎞

⎠⎟
sin ω(m + 1

2
)⎛

⎝⎜
⎞

⎠⎟m=−∞

−1

∑ + h m + α − 1
2

⎛

⎝⎜
⎞

⎠⎟
sin ω(m − 1

2
)⎛

⎝⎜
⎞

⎠⎟m=1

∞

∑ = 0.
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The	
  first	
  summa:on	
  can	
  be	
  wricen	
  (using	
  a	
  posi:ve	
  index	
  of	
  summa:on)	
  as	
  
	
  
	
  
so	
  the	
  expression	
  that	
  must	
  be	
  sa:sfied	
  to	
  have	
  generalized	
  linear	
  phase	
  is	
  
	
  
	
  
The	
  above	
  condi:on	
  will	
  be	
  sa:sfied	
  if	
  
	
  
	
  
Now	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  Then	
  we	
  can	
  write	
  the	
  above	
  requirement	
  on	
  h(n)	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.131c)	
  
	
  
This	
  is	
  the	
  same	
  symmetry	
  condi:on	
  as	
  we	
  found	
  for	
  the	
  case	
  when	
  	
  	
  	
  	
  is	
  an	
  integer.	
  	
  Both	
  cases	
  
are	
  covered	
  by	
  the	
  condi:on	
  that	
  	
  	
  	
  	
  	
  	
  =	
  integer.	
  
	
  
	
  
	
  

 
h −m + α + 1

2
⎛

⎝⎜
⎞

⎠⎟
sin ω(−m + 1

2)⎛

⎝⎜
⎞

⎠⎟m=1

∞

∑

sin ω(m − 1
2)

⎛

⎝⎜
⎞

⎠⎟
−h −m + α + 1

2
⎛

⎝⎜
⎞

⎠⎟
+ h m + α − 1

2
⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪m=1

∞

∑ = 0.

h m + α − 1
2

⎛

⎝⎜
⎞

⎠⎟
= h −m + α + 1

2
⎛

⎝⎜
⎞

⎠⎟
.

 
n = m + α − 1

2
h(n) = h −n + α − 1

2
+ α + 1

2
⎛

⎝⎜
⎞

⎠⎟
= h(2α − n).

α
 2α
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Now	
  consider	
  the	
  case	
  where	
  	
  	
  	
  	
  =	
  π/2	
  or	
  3π/2.	
  For	
  either	
  of	
  these	
  values	
  of	
  	
  	
  	
  ,	
  the	
  general	
  
condi:on	
  of	
  equa:on	
  5.140,	
  shown	
  again	
  below,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
becomes	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa:on	
  5.134)	
  
	
  
Using	
  an	
  approach	
  similar	
  to	
  the	
  one	
  used	
  above	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  or	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  it	
  can	
  be	
  shown	
  that	
  equa:on	
  
5.134	
  is	
  sa:sfied	
  if	
  the	
  following	
  symmetry	
  condi:on	
  is	
  met:	
  

	
   	
   	
   	
   	
  (equa:on	
  5.133c)	
  
	
  
Note:	
  	
  The	
  symmetry	
  condi:ons	
  of	
  equa:on	
  5.131c	
  and	
  equa:on	
  5.133c	
  are	
  sufficient	
  condi:ons	
  
for	
  generalized	
  linear	
  phase.	
  	
  However,	
  they	
  are	
  not	
  necessary	
  condi:ons.	
  	
  For	
  example,	
  consider	
  
the	
  ideal	
  low-­‐pass	
  filter	
  with	
  linear	
  phase:	
  
	
  
	
  
	
  
The	
  corresponding	
  unit	
  sample	
  response	
  is	
  
	
  
	
  

β β

 
h(n)sin[β + ω(n − α)] = 0

n=−∞

∞

∑

 
h(n)

n=−∞

∞

∑ cos[ω(n − α)] = 0.

 β = 0 β = π

h[2α − n] = −h(n).

 Hlp(e
jω ) = e− jωα,   ω < ωc

= 0,  ω < ωc < π.

 
h(n) =

sin[ωc(n − α)]
π(n − α) ,    n ≠ α

=
ωc

π
,     n = α.
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If	
  	
  	
  	
  	
  	
  	
  is	
  not	
  an	
  integer,	
  then	
  h(n)	
  does	
  not	
  have	
  either	
  of	
  the	
  above	
  symmetry	
  proper:es,	
  as	
  	
  	
  
seen	
  in	
  figure	
  5.32(c)	
  below.	
  

 2α

Figure	
  5.32	
  Ideal	
  lowpass	
  filter	
  impulse	
  responses,	
  with	
  	
   ωc = 0.4π

(a)	
  Delay	
  	
  	
  = α = 5

(c)	
  Delay	
  	
  	
  = α = 4.3

(c)	
  Delay	
  	
  	
    = α = 4.5
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