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Chapter	
  6	
  –	
  Structure	
  for	
  Discrete-­‐Time	
  Systems	
  
Review	
  of	
  Direct	
  Form	
  I	
  and	
  Direct	
  Form	
  II	
  
Start	
  with	
  the	
  most	
  basic	
  form	
  of	
  a	
  linear	
  difference	
  equa;on	
  associated	
  with	
  a	
  digital	
  filter:	
  
	
  
	
  
A	
  block	
  diagram	
  of	
  a	
  system	
  that	
  could	
  be	
  used	
  to	
  implement	
  this	
  difference	
  equa;on	
  is	
  shown	
  
below.	
  	
  This	
  structure	
  is	
  called	
  Direct	
  Form	
  I.	
  
	
  

y(n) = bkx(n − k) +
k=0

M

∑ aky(n − k)
k=1

N

∑ .
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The	
  corresponding	
  system	
  func;on	
  is	
  
	
  
	
  
	
  
	
  
Note	
  that	
  we	
  could	
  write	
  H(z)	
  as	
  	
  
	
  
where	
  
	
  	
  
	
  
and	
  
	
  	
  
	
  
	
  
Note	
  that	
  in	
  the	
  previous	
  figure	
  (showing	
  Direct	
  Form	
  I),	
  the	
  input	
  is	
  first	
  passed	
  through	
  the	
  
zeros	
  of	
  the	
  original	
  H(z),	
  the	
  then	
  through	
  the	
  poles.	
  	
  If	
  we	
  denote	
  the	
  output	
  of	
  the	
  first	
  
subsystem	
  (represen;ng	
  the	
  zeros)	
  as	
  v(n),	
  then	
  the	
  original	
  difference	
  equa;on	
  can	
  represented	
  
by	
  the	
  combina;on	
  of	
  the	
  following	
  two	
  difference	
  equa;ons:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  
	
  

H(z) =
bkz

−k

k=0

M

∑

1− akz
−k

k=1

N

∑
.

 H(z) = H1(z)H2(z)

 
H1(z) = bkz

−k

k=0

M

∑

H2(z) =
1

1− akz
−k

k=1

N

∑
.

v(n) = bkx(n − k)
k=1

M

∑ y(n) = v(n) + aky(n − k)
k=1

N

∑ .
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Note	
  that	
  H(z)	
  can	
  be	
  represented	
  equivalently	
  as	
  
	
  	
  
	
  
That	
  means	
  that	
  the	
  overall	
  system	
  func;on	
  is	
  the	
  same	
  if	
  we	
  pass	
  the	
  input	
  first	
  through	
  the	
  
poles	
  of	
  the	
  system,	
  then	
  through	
  the	
  zeros.	
  
	
  	
  
A	
  block	
  diagram	
  for	
  this	
  form	
  of	
  implementa;on	
  is	
  shown	
  below:	
  
	
  
	
  

H(z) = H2(z)H1(z).
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Note	
  that	
  the	
  two	
  columns	
  of	
  delay	
  elements	
  perform	
  the	
  same	
  opera;ons	
  on	
  the	
  same	
  input	
  
signal.	
  	
  Therefore,	
  the	
  implementa;on	
  can	
  be	
  simplified	
  by	
  combining	
  the	
  two	
  delay	
  elements	
  in	
  
the	
  same	
  row,	
  resul;ng	
  in	
  the	
  configura;on	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  above	
  implementa;on	
  is	
  called	
  Direct	
  Form	
  II.	
  	
  If	
  the	
  output	
  of	
  the	
  first	
  subsystem	
  (the	
  
poles)	
  is	
  called	
  w(n),	
  the	
  overall	
  system	
  can	
  now	
  be	
  represented	
  by	
  the	
  following	
  pair	
  of	
  
difference	
  equa;ons:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  
	
   
w(n) = x(n) + akw(n − k)

k=1

N

∑
 
y(n) = bkw(n − k)

k=0

M

∑ .
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Signal	
  Flow	
  Graph	
  Representa;on	
  of	
  Systems	
  
•	
  Similar	
  to	
  Block	
  Diagrams	
  
•	
  Formally	
  defined	
  as	
  a	
  network	
  of	
  directed	
  branches	
  that	
  connect	
  at	
  nodes.	
  
•	
  In	
  a	
  linear	
  signal	
  flow	
  graph,	
  the	
  output	
  of	
  each	
  branch	
  is	
  a	
  linear	
  transforma;on	
  of	
  the	
  branch	
  
input,	
  such	
  as	
  mul;plica;on	
  by	
  a	
  constant	
  or	
  a	
  simple	
  delay	
  
•	
  The	
  output	
  of	
  each	
  node	
  is	
  the	
  sum	
  of	
  the	
  outputs	
  of	
  all	
  branches	
  entering	
  that	
  node.	
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The	
  computa;on	
  needed	
  to	
  generate	
  each	
  new	
  value	
  of	
  the	
  output	
  y(n)	
  is	
  shown	
  below:	
  
Step	
  1:	
  	
  	
  	
  	
  
Step	
  2:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Step	
  3: 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Step	
  4:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Step	
  5:	
  
	
  
Note	
  that	
  the	
  order	
  of	
  the	
  above	
  computa;on	
  steps	
  is	
  important.	
  	
  The	
  above	
  steps	
  should	
  be	
  
implemented	
  in	
  the	
  order	
  shown,	
  with	
  the	
  following	
  excep;ons:	
  	
  
	
  
•	
  Steps	
  4	
  and	
  5	
  could	
  be	
  interchanged.	
  
•	
  Step	
  5	
  could	
  be	
  always	
  be	
  evaluated	
  first.	
  	
  	
  
	
  
General	
  Rules	
  for	
  Evalua;ng	
  Node	
  Values	
  in	
  Block	
  Diagrams	
  or	
  Signal	
  Flow	
  Diagrams	
  
•	
  First	
  update	
  all	
  nodes	
  which	
  are	
  not	
  the	
  output	
  of	
  a	
  delay	
  branch,	
  using	
  the	
  following	
  rule:	
  
	
  	
  	
  -­‐Update	
  a	
  node	
  only	
  if	
  all	
  other	
  nodes	
  (except	
  for	
  nodes	
  that	
  are	
  outputs	
  of	
  delay	
  units)	
  which	
  
feed	
  this	
  node	
  have	
  already	
  been	
  updated.	
  	
  
	
  
•	
  Then	
  update	
  nodes	
  which	
  are	
  at	
  the	
  output	
  of	
  delay	
  branches,	
  using	
  the	
  following	
  rule:	
  
	
  	
  	
  	
  -­‐Update	
  a	
  node	
  at	
  the	
  output	
  of	
  a	
  delay	
  branch	
  only	
  if	
  all	
  other	
  nodes	
  which	
  it	
  feeds	
  through	
  
delays	
  have	
  already	
  been	
  updated.	
  
	
  
	
  
	
  

  w1(n) = aw4(n) + x(n)

  w2(n) = w1(n)

  w3(n) = b0w2(n) + b1w4(n)

  y(n) = w3(n)

  w4(n) = w2(n −1)
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Note:	
  	
  The	
  above	
  rules	
  assume	
  that	
  there	
  is	
  at	
  least	
  one	
  delay	
  branch	
  in	
  each	
  loop.	
  
	
  
Examples	
  of	
  Possible	
  Order	
  of	
  Computa;on	
  
	
  	
  
	
  

One	
  possible	
  order	
  
	
  of	
  computa;on:	
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Another	
  Example:	
  Order	
  of	
  Upda;ng	
  Nodes	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Determina;on	
  of	
  the	
  System	
  Func;on	
  From	
  the	
  Flow	
  Graph	
  of	
  Figure	
  6.12	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  

  W1(z) = W4(z) − X(z)

  W2(z) = αW1(z)

W3(z) = W2(z) + X(z)

  W4(z) = z−1W3(z)

  Y(z) = W2(z) + W4(z)

w1(n)	
  =	
  w4(n)	
  –	
  x(n)	
  

w2(n)	
  =	
  α	
  w1(n)	
  

Node	
  equa;ons:	
   Corresponding	
  z-­‐domain	
  equa;ons:	
  

w3(n)	
  =	
  w2(n)	
  +	
  x(n)	
  

w4(n)	
  =	
  w3(n-­‐1)	
  

y(n)	
  =	
  w2(n)	
  +	
  w4(n)	
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To	
  obtain	
  an	
  expression	
  for	
  H(z),	
  we	
  can	
  combine	
  the	
  above	
  equa;ons	
  so	
  as	
  to	
  eliminate	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  leaving	
  	
  only	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  system	
  parameters	
  (e.g.,	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  ).	
  
	
  
First,	
  eliminate	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  subs;tu;ng	
  the	
  equa;on	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  into	
  the	
  equa;on	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
Next,	
  eliminate	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  subs;tu;ng	
  the	
  equa;on	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  into	
  the	
  equa;on	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
Now	
  subs;tute	
  the	
  new	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  into	
  the	
  new	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  6.23a	
  )	
  
	
  
Now	
  use	
  this	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  solve	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

  W1(z),W2(z),W3(z),and W4(z)  X(z)  Y(z) α  z−1

  W1(z)   W1(z)   W2(z)
W2(z) = αW1(z) = α W4(z) − X(z)⎡⎣ ⎤⎦ .

  W3(z)  W3(z)   W4(z)
W4(z) = z−1W3(z) = z−1 W2(z) + X(z)⎡⎣ ⎤⎦ .

W4(z)

W2(z) = α W4(z) − X(z)⎡⎣ ⎤⎦ = α z−1 W2(z) + X(z)⎡⎣ ⎤⎦ − X(z){ }
= αz−1W2(z) + αz−1X(z) − αX(z).

  W2(z) 1− αz−1⎡⎣ ⎤⎦ = αX(z) z−1 −1⎡⎣ ⎤⎦

W2(z) =
α z−1 −1⎡
⎣

⎤
⎦

1− αz−1⎡
⎣

⎤
⎦
X(z).

  W2(z)   W4(z)

  
W4(z) = z−1 W2(z) + X(z)⎡⎣ ⎤⎦ = z−1

α z−1 −1⎡⎣ ⎤⎦
1− αz−1⎡⎣ ⎤⎦

X(z) + X(z)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

  
= z−1 αz−1 − α +1− αz−1

1− αz−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
X(z)

= z−1 (−α +1)
1− αz−1 X(z). (equa;on	
  6.23b)	
  

W2(z)
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Finally,	
  we	
  subs;tute	
  the	
  expressions	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  into	
  the	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
	
  
	
  
	
  
The	
  signal	
  flow	
  graph	
  for	
  a	
  Direct	
  Form	
  I	
  implementa;on	
  of	
  this	
  reduced	
  version	
  of	
  H(z)	
  is	
  shown	
  
below:	
  
	
  
	
  
	
  
	
  
	
  
Sec=on	
  6.3	
  Basic	
  Structures	
  for	
  IIR	
  Systems	
  
Already	
  covered:	
  
Direct	
  Form	
  I	
  	
   	
   	
  (	
  pass	
  signal	
  though	
  zeros	
  first,	
  then	
  through	
  poles)	
  
Direct	
  Form	
  II 	
   	
  (	
  pass	
  signal	
  though	
  poles	
  first,	
  then	
  through	
  zeros)	
  
	
  
Due	
  to	
  considera;ons	
  of	
  quan;za;on	
  error	
  and	
  scaling,	
  high	
  order	
  IIR	
  filters	
  are	
  normally	
  
implemented	
  using	
  a	
  cascade	
  or	
  parallel	
  implementa;on	
  of	
  second	
  and	
  first	
  order	
  sec;ons.	
  
	
  
	
  

  W2(z)   W4(z)   Y(z)

  Y(z) = W2(z) + W4(z)

  
=
α z−1 −1⎡⎣ ⎤⎦
1− αz−1⎡⎣ ⎤⎦

X(z) + z−1 (−α +1)
1− αz−1 X(z)

= z−1 − α
1− αz−1

⎛

⎝⎜
⎞

⎠⎟
X(z).
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Cascade	
  Form	
  for	
  Implemen;ng	
  H(z)	
  
In	
  order	
  to	
  obtain	
  a	
  cascade	
  implementa;on	
  of	
  an	
  IIR	
  filter,	
  H(z)	
  is	
  first	
  expressed	
  as	
  	
  
	
  
	
  
	
  
	
  
A	
  block	
  diagram	
  showing	
  a	
  cascade	
  implementa;on	
  of	
  a	
  6-­‐th	
  order	
  IIR	
  system	
  is	
  shown	
  below.	
  	
  
This	
  figure	
  includes	
  3	
  second-­‐order	
  sec;ons,	
  each	
  implemented	
  using	
  Direct	
  Form	
  II.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  
 
 

H(z) = A
(1− fkz−1)

k=1

M1

∏ (1− gkz−1)
k=1

M2

∏ (1− g*
kz−1)

(1− ckz−1)
k=1

N1

∏ (1− dkz−1)(1− d*
kz−1)

k=1

N2

∏
.

Figure	
  6.18	
  Cascade	
  structure	
  for	
  a	
  6th	
  order	
  system	
  with	
  a	
  	
  direct	
  form	
  II	
  Realiza;on	
  of	
  
each	
  2nd	
  order	
  sec;on.	
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The	
  set	
  of	
  difference	
  equa;ons	
  that	
  could	
  be	
  used	
  to	
  implement	
  a	
  digital	
  filter	
  represented	
  as	
  a	
  
cascade	
  of	
  Ns	
  second	
  order	
  sec;ons	
  is	
  shown	
  below:	
  
	
  	
  
 
   
y0(n) = x(n)

  wk(n) = a1kwk(n −1) + a2kwk(n − 2) + yk−1(n)

  yk(n) = b0kwk(n) + b1kwk(n −1) + b1kwk(n − 2)

y(n) = yNs
(n).

  k = 1,2,...,Ns

  k = 1,2,...,Ns

Figure	
  6.18	
  Cascade	
  structure	
  for	
  a	
  6th	
  order	
  system	
  with	
  a	
  	
  direct	
  form	
  II	
  Realiza;on	
  of	
  
each	
  2nd	
  order	
  sec;on.	
  

(Repeated	
  figure)	
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•	
  If	
  H(z)	
  consists	
  of	
  a	
  cascade	
  of	
  Ns	
  	
  second	
  order	
  sec;ons,	
  the	
  number	
  of	
  possible	
  ways	
  	
  
to	
  pair	
  Ns	
  pole	
  sec;ons	
  with	
  Ns	
  zero	
  sec;ons	
  is	
  (Ns)!.	
  	
  	
  
	
  
•	
  For	
  each	
  pairing	
  of	
  pole	
  sec;ons	
  with	
  zero	
  sec;ons,	
  	
  there	
  are	
  (Ns)!	
  ways	
  to	
  order	
  these	
  pairs,	
  
from	
  the	
  input	
  toward	
  the	
  output	
  of	
  the	
  filter.	
  	
  	
  
Therefore,	
  the	
  total	
  number	
  different	
  combina;ons	
  of	
  pairings	
  and	
  orderings	
  is	
  [(Ns)!]2.	
  
	
  
Note:	
  	
  If	
  we	
  didn’t	
  limit	
  ourselves	
  to	
  using	
  Direct	
  Form	
  II	
  for	
  each	
  second	
  order	
  sec;on,	
  even	
  
more	
  implementa;ons	
  are	
  possible.	
  
	
  
If	
  all	
  real	
  poles	
  and	
  zeros,	
  as	
  well	
  as	
  complex	
  poles	
  and	
  zeros,	
  	
  are	
  combined	
  into	
  second	
  order	
  
factors,	
  the	
  cascade	
  form	
  can	
  be	
  represented	
  as	
  
	
  
	
  
Note	
  that	
  implemen;ng	
  H(z)	
  in	
  the	
  form	
  would	
  require	
  5	
  mul;plica;ons	
  per	
  sec;on.	
  
	
  
More	
  generally,	
  if	
  the	
  number	
  of	
  zeros	
  (M)	
  equals	
  the	
  number	
  of	
  poles	
  (N)	
  and	
  N	
  is	
  an	
  even	
  
number	
  ,	
  then	
  Ns	
  =	
  	
  N/2	
  and	
  number	
  of	
  mul;plica;ons	
  required	
  to	
  generate	
  each	
  new	
  output	
  is	
  	
  
5	
  Ns	
  =	
  5(N/2)	
  =	
  (2.5)N.	
  	
  In	
  comparison,	
  implementa;on	
  of	
  Direct	
  Form	
  I	
  or	
  Direct	
  Form	
  II	
  in	
  
unfactored	
  form	
  requires	
  2N	
  +	
  1	
  mul;plica;ons	
  per	
  each	
  new	
  output.	
  
	
  
	
  
	
  

H(z) =
(b0k + b1kz

−1 + b2kz
−2)

(1− a1kz
−1 − a2kz

−2
k=1

Ns

∏ .

13	
  



Another	
  way	
  to	
  represent	
  second-­‐order	
  factors	
  for	
  the	
  cascade	
  form	
  is	
  shown	
  below:	
  
	
  
	
  
If	
  this	
  version	
  of	
  H(z)	
  is	
  used,	
  the	
  total	
  number	
  of	
  mul;plica;ons	
  needed	
  per	
  output	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  Ns	
  +1	
  =	
  2N	
  +	
  1.	
  	
  	
  (Note	
  that	
  the	
  scale	
  factors	
  for	
  the	
  second	
  order	
  sec;ons	
  are	
  combined	
  to	
  
create	
  a	
  single,	
  overall	
  scale	
  factor.)	
  
	
  
This	
  assumes	
  that	
  the	
  scale	
  factors	
  for	
  all	
  2nd	
  order	
  sec;ons	
  are	
  combined	
  to	
  create	
  a	
  single	
  
overall	
  scale	
  factor.)	
  	
  However,	
  the	
  “5-­‐mul;plica;ons	
  per	
  sec;on”	
  version	
  is	
  olen	
  preferred	
  
because	
  it	
  permits	
  distribu;ng	
  the	
  gain	
  of	
  the	
  system,	
  which	
  is	
  olen	
  helpful	
  to	
  dealing	
  with	
  
scaling	
  issues,	
  as	
  will	
  be	
  discussed	
  shortly.	
  	
  	
  
	
  	
  
Parallel	
  Forms	
  
Second	
  order	
  sec;ons	
  can	
  also	
  be	
  combined	
  in	
  a	
  parallel	
  configura;on,	
  where	
  the	
  second	
  order	
  
sec;ons	
  are	
  based	
  on	
  using	
  a	
  par;al	
  frac;on	
  representa;on	
  of	
  H(z),	
  as	
  shown	
  below:	
  
	
  
	
  
where	
  Np	
  =	
  M	
  –	
  N	
  and	
  where	
  M	
  is	
  the	
  total	
  number	
  of	
  zeros	
  and	
  N	
  is	
  the	
  total	
  number	
  of	
  poles.	
  	
  
(If	
  Np	
  <	
  0,	
  the	
  first	
  summa;on	
  is	
  not	
  included	
  in	
  the	
  expression	
  above.)	
  
	
  
	
  

   
H(z) = b0

(1+ b1kz
−1 + b2kz

−2)
(1− a1kz

−1 − a2kz
−2

k=1

Ns

∏ .

H(z) = Ckz
−k

k=0

Np

∑ +
Ak

1− ckz
−1 +

k=1

N1

∑
Bk(1− ekz

−1)
(1− dkz

−1)(1− d*
kz

−1)k=1

N2

∑
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A	
  parallel	
  implementa;on	
  of	
  a	
  6-­‐th	
  order	
  IIR	
  filter	
  is	
  shown	
  below:	
  
	
  

Figure	
  6.20	
  Parallel	
  form	
  structure	
  for	
  a	
  6th	
  order	
  system	
  (M	
  =	
  N	
  =	
  6)	
  with	
  the	
  real	
  and	
  
complex	
  poles	
  grouped	
  in	
  pairs.	
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A	
  general	
  representa;on	
  of	
  the	
  difference	
  equa;ons	
  that	
  could	
  be	
  used	
  to	
  implement	
  	
  
a	
  parallel	
  configura;on	
  of	
  second-­‐order	
  Direct	
  Form	
  II	
  sec;ons	
  is	
  shown	
  below:	
  

	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  6.36c)	
  
	
  
(If	
  M	
  <	
  N,	
  the	
  summa;on	
  involving	
  Ck	
  is	
  not	
  included.)	
  
	
  	
  
Transposed	
  Forms	
  
A	
  new	
  implementa;on	
  of	
  a	
  system	
  having	
  the	
  same	
  overall	
  H(z)	
  can	
  be	
  obtained	
  by	
  crea;ng	
  the	
  
transposed	
  form	
  of	
  the	
  system.	
  	
  The	
  step	
  involved	
  as	
  follows:	
  
	
  
1.	
  Reverse	
  the	
  direc;on	
  of	
  signal	
  flow	
  in	
  all	
  branches	
  of	
  the	
  flow	
  graph.	
  
2.	
  Reverse	
  the	
  roles	
  of	
  the	
  input	
  and	
  output	
  nodes.	
  
3.	
  Keep	
  the	
  branch	
  opera;ons	
  the	
  same	
  (delays,	
  mul;plica;ons,	
  etc.).	
  
	
  
The	
  fact	
  that	
  the	
  overall	
  transfer	
  func;on	
  stays	
  the	
  same	
  is	
  based	
  on	
  Mason's	
  Rule,	
  which	
  is	
  
summarized	
  at	
  the	
  end	
  of	
  this	
  unit.	
  
	
  
	
  

  wk(n) = a1kwk(n −1) + a2kwk(n − 2) + x(n),      k=1,2, . . . , Ns

  yk(n) = e0kwk(n) + e1kwk(n −1),           k=1,2, . . . , Ns

y(n) = Ckx(n − k) +
k=0

Np

∑ yk(n)
k=1

Ns

∑ .
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Example	
  1	
  of	
  Transposed	
  System	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Example	
  2	
  	
  of	
  a	
  Transposed	
  System	
  

Figure	
  6.25	
  Direct	
  Form	
  II	
  structure	
  for	
  Example	
  6.8	
  	
  

Figure	
  6.24	
  (a)	
  Flow	
  graph	
  for	
  simple	
  1st-­‐order	
  system	
   (b)	
  Transposed	
  form	
  of	
  (a)	
  	
  

(c)	
  Structure	
  of	
  (b)	
  redrawn	
  with	
  input	
  on	
  lel	
  	
  

Figure	
  6.26	
  Transposed	
  Direct	
  Form	
  II	
  structure	
  	
  
for	
  Example	
  6.8	
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Implementa=on	
  of	
  FIR	
  Filters	
  
Since	
  FIR	
  filters	
  can	
  be	
  considered	
  a	
  special	
  case	
  of	
  IIR	
  filters	
  for	
  which	
  all	
  the	
  feedback	
  
coefficients	
  are	
  0,	
  the	
  previous	
  discussion	
  on	
  implementa;on	
  of	
  IIR	
  filters	
  also	
  applies	
  to	
  the	
  FIR	
  
cases.	
  	
  However,	
  several	
  issues	
  should	
  be	
  emphasized	
  for	
  the	
  FIR	
  case:	
  
	
  
•	
  Direct	
  Form	
  I	
  and	
  Direct	
  Form	
  II	
  are	
  the	
  same	
  for	
  FIR	
  filters.	
  	
  For	
  example,	
  compare	
  the	
  
following	
  two	
  figures	
  for	
  the	
  case	
  where	
  all	
  the	
  ak	
  terms	
  are	
  0.	
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•	
  The	
  method	
  of	
  obtaining	
  a	
  new	
  implementa;on	
  structure	
  by	
  transposing	
  an	
  exis;ng	
  structure	
  
obviously	
  s;ll	
  applies.	
  	
  See	
  the	
  example	
  below	
  of	
  obtaining	
  a	
  transpose	
  form	
  for	
  an	
  FIR	
  filter.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Note:	
  	
  because	
  of	
  the	
  structure	
  shown	
  in	
  Figure	
  6.29,	
  above,	
  this	
  structure	
  is	
  olen	
  called	
  a	
  
tapped-­‐delay	
  line	
  structure	
  or	
  a	
  transversal	
  filter	
  structure.	
  
	
  
	
  
	
  

Figure	
  6.29	
  Direct-­‐form	
  realiza;on	
  of	
  an	
  FIR	
  system	
  

Figure	
  6.30	
  Transposi;on	
  of	
  the	
  network	
  of	
  Figure	
  6.29.	
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•	
  The	
  cascade	
  structure	
  also	
  applies	
  to	
  FIR	
  filters.	
  	
  To	
  obtain	
  this	
  structure,	
  the	
  system	
  func;on	
  	
  	
  
is	
  expressed	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  6.48)	
  
	
  
which	
  can	
  be	
  implemented	
  as	
  shown	
  in	
  the	
  figure	
  below.	
  
	
  
	
  
	
  

  
H(z) = h(n)z−n

n=0

M

∑ = (b0k + b1kz
−1 + b2k

k=1

Ms

∏ z−2)

Figure	
  6.31	
  Cascade	
  form	
  realiza;on	
  of	
  an	
  FIR	
  system.	
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Implemen;ng	
  FIR	
  Filters	
  Having	
  Generalized	
  Linear	
  Phase	
  
The	
  symmetry	
  property	
  of	
  h(n)	
  for	
  Types	
  I-­‐IV	
  FIR	
  filters	
  can	
  be	
  used	
  to	
  reduce	
  the	
  number	
  of	
  
mul;plica;ons	
  per	
  output	
  by	
  a	
  factor	
  of	
  	
  2.	
  	
  	
  
	
  
For	
  Type	
  I	
  filters	
  (	
  M	
  even,	
  h(n)	
  symmetric),	
  the	
  filter	
  can	
  be	
  implemented	
  using	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (Equa;on	
  6.50)	
  	
  
	
  
The	
  corresponding	
  implementa;on	
  structure	
  is	
  shown	
  below.	
  
	
  

y(n) = h(k)
k=0

M
2
−1

∑ [x(n − k) + x(n −M + k)] + h(M
2
)x(n − M

2
).

Figure	
  6.32	
  Direct	
  form	
  structure	
  of	
  an	
  FIR	
  linear-­‐phase	
  system	
  when	
  M	
  is	
  an	
  even	
  integer.	
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Type	
  II	
  filters	
  (M	
  odd,	
  h(n)	
  symmetric)	
  can	
  be	
  implemen;ng	
  using:	
  
	
  
	
  
for	
  which	
  the	
  implementa;on	
  structure	
  is	
  shown	
  below.	
  
	
  

  
y(n) = h(k)

k=0

M−1
2

∑ [x(n − k) + x(n − M + k)]

 
x n − M −1

2
⎛

⎝⎜
⎞

⎠⎟

Figure	
  6.33	
  Direct	
  form	
  structure	
  for	
  an	
  FIR	
  linear-­‐phase	
  system	
  when	
  M	
  is	
  an	
  odd	
  integer.	
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For	
  Type	
  III	
  filters	
  (M	
  even,	
  h(n)	
  an;symmetric)	
  	
  the	
  difference	
  equa;on	
  for	
  implemen;ng	
  the	
  
system	
  is	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
The	
  implementa;on	
  structure	
  is	
  the	
  same	
  as	
  one	
  for	
  Type	
  I	
  filters,	
  except	
  that	
  all	
  the	
  x(n-­‐j)	
  terms	
  
traveling	
  lel	
  on	
  the	
  second	
  row	
  in	
  the	
  diagram	
  are	
  subtracted,	
  rather	
  than	
  added,	
  to	
  the	
  
summa;on	
  node	
  they	
  feed.	
  	
  In	
  addi;on,	
  h(M/2)	
  is	
  always	
  0	
  for	
  a	
  Type	
  III	
  filter.	
  
	
  
For	
  Type	
  IV	
  filters,	
  the	
  difference	
  equa;on	
  is	
  
	
  
	
  
	
  
and	
  the	
  implementa;on	
  structure	
  is	
  the	
  same	
  as	
  one	
  for	
  Type	
  II	
  filters,	
  except	
  that	
  all	
  the	
  x(n-­‐j)	
  
terms	
  traveling	
  lel	
  on	
  the	
  second	
  row	
  in	
  the	
  diagram	
  are	
  subtracted,	
  rather	
  than	
  added,	
  to	
  the	
  
summa;on	
  node	
  they	
  feed.	
  
	
  
	
  

y(n) = h(k)
k=0

M
2
−1

∑ [x(n − k) − x(n −M + k)]. (Equa;on	
  6.51)	
  

y(n) = h(k)
k=0

M−1
2

∑ [x(n − k) − x(n −M + k)] (Equa;on	
  6.53)	
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More	
  on	
  cascade	
  implementa;ons:	
  	
  We	
  have	
  seen	
  that	
  the	
  zeros	
  of	
  Types	
  I-­‐IV	
  FIR	
  filters	
  occur	
  	
  	
  	
  
in	
  groups	
  of	
  4,	
  2,	
  or	
  1.	
  	
  One	
  approach	
  to	
  implemen;ng	
  these	
  filters	
  is	
  to	
  use	
  the	
  cascade	
  form	
  
with	
  each	
  mul;plying	
  factor	
  represen;ng	
  4	
  zeros,	
  2	
  zeros,	
  or	
  1	
  zero	
  according	
  to	
  the	
  inherent	
  
grouping	
  of	
  zeros	
  of	
  these	
  generalized	
  linear	
  phase	
  filters.	
  	
  For	
  example,	
  consider	
  the	
  FIR	
  filter	
  
having	
  the	
  zeros	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
This	
  filter	
  could	
  be	
  implemented	
  in	
  cascade	
  form	
  based	
  on	
  the	
  following	
  factoring	
  of	
  H(z):	
  
	
  
where	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  
	
  	
  
Note	
  from	
  the	
  symmetry	
  of	
  coefficients	
  for	
  each	
  of	
  the	
  factors	
  of	
  H(z)	
  indicates	
  that	
  each	
  
individual	
  factor	
  has	
  generalized	
  linear	
  phase.	
  
	
  

  H(z) = h(0)(1+ z−1)(1+ az−1 + z−2)(1+ bz−1 + z−2)           (1+ cz−1 + dz−2 + cz−3 + z−4)

  a = (z2 +1/ z2)   b = 2Re[z3}   c = −2Re[z1 +1/ z1] d = 2 + z1 + (1/ z1)
2 .

Figure	
  6.34	
  Symmetry	
  of	
  zeros	
  	
  
for	
  a	
  linear-­‐phase	
  FIR	
  filter.	
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Applica;on	
  of	
  Mason’s	
  Rule	
  to	
  2-­‐Tube	
  Speech	
  Produc;on	
  Model	
  

Mason’s	
  Rule:	
  

Overall	
  transmitance	
  (transfer	
  func;on)	
  is	
  given	
  by:	
  

 
T =

TnΔn
n
∑

Δ

where	
  Tn	
  =	
  transmitance	
  of	
  one	
  forward	
  path	
  between	
  input	
  and	
  output	
  
	
  (only	
  1	
  in	
  this	
  example)	
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T1 =

1+ ρg

2 e−sτ1(1+ ρ1)−sτ2(1+ ρL )

=
1+ ρg

2
(1+ ρ1)(1+ ρL )e−s(τ1+τ2)

Also,	
  	
   Δ = 1− L1∑ + L2∑ − L3∑ +  etc.

where	
  L1	
  is	
  the	
  transmitance	
  of	
  a	
  closed	
  path	
  

and	
  	
   L1∑ is	
  the	
  sum	
  of	
  the	
  L1	
  values	
  for	
  all	
  closed	
  paths.	
  	
  (which	
  can	
  overlap)	
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For	
  the	
  above	
  example,	
  
	
  

L1∑ = −ρ1ρge−s2τ1 − ρ1ρLe−s2τ2 − ρgρL (1+ ρ1)(1− ρ1)
1−ρ12

   e−s(2τ1+2τ2)

Also,	
  L2	
  =	
  the	
  product	
  of	
  transmitance	
  of	
  two	
  non-­‐touching	
  loops	
  	
  
(loops	
  with	
  no	
  common	
  nodes)	
  

 L2∑ =	
  sum	
  of	
  L2	
  values	
  for	
  all	
  possible	
  pairwise	
  combina;ons	
  of	
  non-­‐touching	
  loops.	
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 ⇒ L2 = L2∑ = −ρ1ρge−s2τ1( ) −ρ1ρLe−s2τ2( )

Since	
  L3	
  is	
  the	
  product	
  of	
  three	
  non-­‐touching	
  loops	
  (loops	
  with	
  no	
  common	
  nodes),	
  
L3	
  =	
  0	
  for	
  this	
  example.	
  

In	
  the	
  present	
  example	
  (2-­‐tube)	
  model),	
  the	
  only	
  non-­‐touching	
  pair	
  of	
  loops	
  
	
  involves	
  Loop	
  1	
  and	
  Loop	
  2.	
  

= ρ1
2ρgρLe−s(2τ1+2τ2)
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 = 1− −ρ1ρge−s2τ1 − ρ1ρLe−s2τ2 − ρgρL(1− ρ1
2)e−s(2τ1+2τ2 )⎡⎣ ⎤⎦ + ρ1

2ρgρLe−s(2τ1+2τ2 )

Therefore,	
  for	
  this	
  example,	
  	
  

Δ = 1 − ΣL1 + ΣL2

 = 1+ ρ1ρge−s2τ1 + ρ1ρLe−s2τ2 + ρgρLe−s(2τ1+2τ2 )

Also,	
  	
  Δ1 is	
  the	
  value	
  of	
  	
  Δ for	
  the	
  flow	
  graph	
  that	
  results	
  when	
  forward	
  path	
  T1	
  is	
  

removed.	
  	
  In	
  our	
  case,	
  there	
  are	
  no	
  loops	
  lel	
  when	
  T1	
  is	
  removed.	
  

⇒ Δ1 = 1 − ΣL1 + ΣL2 = 1

Overall,	
  the	
  expression	
  for	
  T	
  becomes	
   T =
TnΔn

n
∑

Δ
= T1

Δ

 
=

1+ ρg

2
⎛

⎝⎜
⎞

⎠⎟
(1+ ρ1)(1+ ρL )e−s(τ1+ τ2 )

1+ ρ1ρge−s2τ1 + ρ1ρLe−s2τ2 + ρgρLe−s(2τ1+2τ2 ) = H(s)

To	
  obtain	
  an	
  expression	
  for	
  the	
  frequency	
  response,	
  let	
  	
  s = jΩ in	
  H(s).	
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