ECE 844 Unit 11
Chapter 6 — Structure for Discrete-Time Systems
Review of Direct Form | and Direct Form Il

Start with the most basic form of a linear difference equation associated with a digital filter:
M N

y(n) =Y b x(n-k)+Y ay(n-k).
k=0 k=1

A block diagram of a system that could be used to implement this difference equation is shown
below. This structure is called Direct Form |I.
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The corresponding system function is

M
>bz"

H(z) = *=°

Note that we could write H(z) as
H(z) = H,(2)H,(2)
where

M
H.(z) = ébkz‘k

and
H,(z) =

1
" .
1-Yaz™

k=1

Note that in the previous figure (showing Direct Form |), the input is first passed through the
zeros of the original H(z), the then through the poles. If we denote the output of the first
subsystem (representing the zeros) as v(n), then the original difference equation can represented
by the combination of the following two difference equations:

v(n) = i b x(n-k) and y(n) = v(n) + i a y(n-k).



Note that H(z) can be represented equivalently as
H(z) = H,(2)H.(2).

That means that the overall system function is the same if we pass the input first through the
poles of the system, then through the zeros.

A block diagram for this form of implementation is shown below:
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Note that the two columns of delay elements perform the same operations on the same input
signal. Therefore, the implementation can be simplified by combining the two delay elements in
the same row, resulting in the configuration shown below:

o U U T
x[n] \/ L AN
Z—l

b
O
/
1
~N | -1 by_1 r
© g \*)
1
ay by Figure 6.5 Combination of delays in

~€ > Figure 6.4.

The above implementation is called Direct Form Il. If the output of the first subsystem (the

poles) is called w(n), the overall system can now be represented by the following pair of
difference equations:

w(n) = x(n) + i aw(n-k) and y(n)= i b, w(n - k).
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Signal Flow Graph Representation of Systems
e Similar to Block Diagrams

e Formally defined as a network of directed branches that connect at nodes.

e In a linear signal flow graph, the output of each branch is a linear transformation of the branch
input, such as multiplication by a constant or a simple delay

e The output of each node is the sum of the outputs of all branches entering that node.
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Figure 6.11  Signal flow graph of

Figyre 6.10(b) with the delay branch
indicated by z—1.

Figure 6.10 (a) Block diagram
representation of a first-order digital
filter. (b) Structure of the signal flow
graph corresponding to the block
diagram in (a).



The computation needed to generate each new value of the output y(n) is shown below:
Step 1: w,(n)=aw,(n)+x(n)

Step 2: w,(n)=w,(n) o Ml waln] b ]

Step 3: W,(n) =b,w,(n)+bw,(n) *[n]
Step 4: Y(n)=w,(n)

Step 5: w,(n)=w,(n-1)

wy[n]

Note that the order of the above computation steps is important. The above steps should be
implemented in the order shown, with the following exceptions:

e Steps 4 and 5 could be interchanged.
e Step 5 could be always be evaluated first.

General Rules for Evaluating Node Values in Block Diagrams or Signal Flow Diagrams

e First update all nodes which are not the output of a delay branch, using the following rule:

-Update a node only if all other nodes (except for nodes that are outputs of delay units) which
feed this node have already been updated.

e Then update nodes which are at the output of delay branches, using the following rule:

-Update a node at the output of a delay branch only if all other nodes which it feeds through
delays have already been updated.




Note: The above rules assume that there is at least one delay branch in each loop.

Examples of Possible Order of Computation
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Figure 6.17  Direct form Il structure for Example 6.4.



Another Example: Order of Updating Nodes

wi[n] 270 wyln]

Figure 6.12 Flow graph not in standard direct form.

Determination of the System Function From the Flow Graph of Figure 6.12

Node equations: Corresponding z-domain equations:
w,(n) = w,(n) = x(n) W,(2) = W,(2) - X(2)

W,(n) = ot wy(n) W, (2) = aW,(2)

w3(n) = w,(n) + x(n) W,(2) = W,(2) + X(2)

W,y(n) = w(n-1) W, (2) = 2'W,(2)

y(n) = w,(n) + w,(n) Y(z) = W,(2) + W, (2)



To obtain an expression for H(z), we can combine the above equations so as to eliminate
W,(2),W,(z),W,(z),and W, (z) , leaving only X(z) and Y(z) and system parameters (e.g., & and z7).

First, eliminate W (z) by substituting the equation for W (z) into the equation for W,(z):
W, (2) = aW,(2) = o[ W,(2) - X(2) .
Next, eliminate W,(z) by substituting the equation for W,(z) into the equation forw,(z):
W,(z) = 2'W,(2) = 2| W,(2) + X(2) ]
Now substitute the new expression for W,(z) into the new expression for W,(z):
W,(2) = a[W,(2) - X(@) ]| = a{z[W,(@) + X(@) |- X(2)}
= az 'W,(2) + az 'X(z) - oX(2).
Wz(z)[1 - ocz“} = ocX(z)[z‘1 - 1]

W, (2) = afz’ 1) X(2).

['I—ocz“}
Now use this expression for W,(z) to solve forw,(z):

-1 0€|:Z_1—1:|X X
z [1_(12_1} (2)+ X(2)

:lX(Z)

(equation 6.23a)

W,(2)=2"[W,(2)+ X(@)]

_ oz'-a+1-az’
1- oz

(—a+1)
o' 2 (equation 6.23b)

= Z_‘I




Finally, we substitute the expressions for W,(z) and W, (z) into the expression for Y(z) : 10
Y(z)=W,(2)+W,(2)

_ofz'-] L (o)
- mX(z) +z p— X(z)

= ( Z” _(i)X(z).
1-0z

The signal flow graph for a Direct Form | implementation of this reduced version of H(z) is shown
below:

Figure 6.13 Direct form | equivalent of Figure 6.12.

Section 6.3 Basic Structures for IIR Systems
Already covered:

Direct Form | ( pass signal though zeros first, then through poles)
Direct Form |l ( pass signal though poles first, then through zeros)

Due to considerations of quantization error and scaling, high order IIR filters are normally
implemented using a cascade or parallel implementation of second and first order sections.




Cascade Form for Implementing H(z)
In order to obtain a cascade implementation of an IIR filter, H(z) is first expressed as

T10-tz)[[(-gz)(-giz")
H(z) = A - .
[[10-cz)[[(-dz)(1-dz™)

A block diagram showing a cascade implementation of a 6-th order IIR system is shown below.
This figure includes 3 second-order sections, each implemented using Direct Form Il.

Figure 6.18 Cascade structure for a 6th order system with a direct form Il Realization of
each 2nd order section.
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Figure 6.18 Cascade structure for a 6th order system with a direct form Il Realization of
each 2nd order section.

The set of difference equations that could be used to implement a digital filter represented as a
cascade of N, second order sections is shown below:

Y, (n)=x(n)
wk(n) = a"(wk(n -D+ akak(n -2)+ yH(n) k = 1,2,...,N,
y (n)=b,w (n)+b w (n-1)+b w,(n-2) k=12,..,N_

y(n) =y, ().



e If H(z) consists of a cascade of N, second order sections, the number of possible ways
to pair N_pole sections with N zero sections is (N)!.

* For each pairing of pole sections with zero sections, there are (N,)! ways to order these pairs,
from the input toward the output of the filter.

Therefore, the total number different combinations of pairings and orderings is [(N,)!]2.

Note: If we didn’t limit ourselves to using Direct Form Il for each second order section, even
more implementations are possible.

If all real poles and zeros, as well as complex poles and zeros, are combined into second order
factors, the cascade form can be represented as

“ (b, +b,z"+b,z7?)

Hz) =]

a 2
k=1 (1 - a"(Z - aZkZ

Note that implementing H(z) in the form would require 5 multiplications per section.

More generally, if the number of zeros (M) equals the number of poles (N) and N is an even

number, then N, = N/2 and number of multiplications required to generate each new output is

5N, =5(N/2) = (2.5)N. In comparison, implementation of Direct Form | or Direct Form Il in
unfactored form requires 2N + 1 multiplications per each new output.
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Another way to represent second-order factors for the cascade form is shown below: 14

(1+b z +b Z )
H(2) = b°H (1-a,z'-a,z?

If this version of H(z) is used, the total number of multiplications needed per output is
4 Ns+1=2N+1. (Note that the scale factors for the second order sections are combined to
create a single, overall scale factor.)

This assumes that the scale factors for all 2nd order sections are combined to create a single
overall scale factor.) However, the “5-multiplications per section” version is often preferred
because it permits distributing the gain of the system, which is often helpful to dealing with

scaling issues, as will be discussed shortly.

Parallel Forms

Second order sections can also be combined in a parallel configuration, where the second order
sections are based on using a partial fraction representation of H(z), as shown below:

H(z) = ch +z % B(1-ez")

11-c .z kz{ (1-dz")(-dz™")
where N, =M —N and where M is the total number of zeros and N is the total number of poles.
(If N, <0, the first summation is not included in the expression above.)




A parallel implementation of a 6-th order IIR filter is shown below:
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Figure 6.20 Parallel form structure for a 6th order system (M = N = 6) with the real and
complex poles grouped in pairs.



A general representation of the difference equations that could be used to implement
a parallel configuration of second-order Direct Form Il sections is shown below:

w (n)=aw (n-N+a,w (n-2)+x(n), k=1,2,...,N,
y (n)=¢e,w.(n)+e w (n-1), k=1,2, ..., N,

NP Ns
y(n) = kZOCkX(n—k) +;yk(n)- (equation 6.36¢)

(If M <N, the summation involving C, is not included.)

Transposed Forms

A new implementation of a system having the same overall H(z) can be obtained by creating the
transposed form of the system. The step involved as follows:

1. Reverse the direction of signal flow in all branches of the flow graph.
2. Reverse the roles of the input and output nodes.
3. Keep the branch operations the same (delays, multiplications, etc.).

The fact that the overall transfer function stays the same is based on Mason's Rule, which is
summarized at the end of this unit.



Example 1 of Transposed System
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Example 2 of a Transposed System
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Figure 6.25 Direct Form Il structure for Example 6.8
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Figure 6.26 Transposed Direct Form Il structure
for Example 6.8
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Implementation of FIR Filters

18
Since FIR filters can be considered a special case of IIR filters for which all the feedback

coefficients are 0, the previous discussion on implementation of IIR filters also applies to the FIR
cases. However, several issues should be emphasized for the FIR case:

e Direct Form | and Direct Form Il are the same for FIR filters. For example, compare the
following two figures for the case where all the a, terms are 0.

Fig"u,re 6.3 Block diagram
representation for a general Nth-
difference equation.

F‘igure 6.5 Combfnation of delays in
by Figure 6.4.




e The method of obtaining a new implementation structure by transposing an existing structure 19
obviously still applies. See the example below of obtaining a transpose form for an FIR filter.

Figure 6.29 Direct-form realization of an FIR system
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Figure 6.30 Transposition of the network of Figure 6.29.

Note: because of the structure shown in Figure 6.29, above, this structure is often called a
tapped-delay line structure or a transversal filter structure.




e The cascade structure also applies to FIR filters. To obtain this structure, the system function

is expressed as

H(z) = i h(n)z ™" =

n=0

MS
H (b, +b,z"+ b, z?%)

(equation 6.48)

which can be implemented as shown in the figure below.
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Figure 6.31 Cascade form realization of an FIR system.
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Implementing FIR Filters Having Generalized Linear Phase 21

The symmetry property of h(n) for Types I-IV FIR filters can be used to reduce the number of
multiplications per output by a factor of 2.

For Type | filters ( M even, h(n) symmetric), the filter can be implemented using

M,

y(n) = 2Zh(k)[X(n —k)+x(n-M+k)]+ h(%)X(n - %)- (Equation 6.50)

The corresponding implementation structure is shown below.
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Figure 6.32 Direct form structure of an FIR linear-phase system when M is an even integer.



Type Il filters (M odd, h(n) symmetric) can be implementing using:
M-1

y(n) = i h(k)[x(n-k) +x(n-M+k)]
k=0

for which the implementation structure is shown below.
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Figure 6.33 Direct form structure for an FIR linear-phase system when M is an odd integer.
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For Type lll filters (M even, h(n) antisymmetric) the difference equation for implementing the 23
system is

M4

y(n) = ZZh(k)[x(n—k)—x(n—MJrk)], (Equation 6.51)
k=0

The implementation structure is the same as one for Type | filters, except that all the x(n-j) terms
traveling left on the second row in the diagram are subtracted, rather than added, to the
summation node they feed. In addition, h(M/2) is always 0 for a Type Il filter.

For Type |V filters, the difference equation is

M-1

y(n) = ih(k)[x(n—k)—x(n—M+k)] (Equation 6.53)
k=0

and the implementation structure is the same as one for Type Il filters, except that all the x(n-j)
terms traveling left on the second row in the diagram are subtracted, rather than added, to the
summation node they feed.



More on cascade implementations: We have seen that the zeros of Types I-IV FIR filters occur
in groups of 4, 2, or 1. One approach to implementing these filters is to use the cascade form
with each multiplying factor representing 4 zeros, 2 zeros, or 1 zero according to the inherent
grouping of zeros of these generalized linear phase filters. For example, consider the FIR filter

having the zeros shown below:

$ o -
m *
Z3 !
20 z-plane
Z4 ) O
;2 i Re
zjo 22
o Figure 6.34 Symmetry of zeros
? o 1 for a linear-phase FIR filter.
21

This filter could be implemented in cascade form based on the following factoring of H(z):
HZ)=h(0)(1+z"Y(+az'+z?)(1+bz"'+2z?) (1+cz'+dz?+cz3+2*)

where

a=(z,+1/2,)  b=2Re[z,] d=2+[z,+(1/2,).

c=-2Re[z,+1/2]] and

Note from the symmetry of coefficients for each of the factors of H(z) indicates that each
individual factor has generalized linear phase.
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25
Application of Mason’s Rule to 2-Tube Speech Production Model

1+
ng - 1+p 1+ pL
e > et > =82 >
Pg AN -mY ™ p1 ~pLY
T
e~st < e 2
1-m

Mason’s Rule:

Overall transmittance (transfer function) is given by:

Y ToA,

T=
A

where T = transmittance of one forward path between input and output
(only 1 in this example)



1+
ng - 1+p 1+ pL
—> e > e=s"? >
Pg N -pY ™ p1 ~pLY
—stl T
e s < e—s 2
1-pm

T, = ”%e-sm +p1)"2(1+ p,)

_ 1+2pg (-I + p1)(-| + pL)e—S(’I:1+’Cz)

Also, A=1—2L1+2L2—2L3+ etc.

where L, is the transmittance of a closed path

and Y.L is the sum of the L, values for all closed paths. (which can overlap)
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27

1+
ng - 1+p 1+ pL
—> e > e=s"? >
Pg N -pY ™ p1 ~pLY
—stl T
e™ " < oS 2
1-pm

For the above example,

2 |_1 — _p1pge—5211 _ p1pLe—5212 — PaPL 0 + p1)(1 _ p1)Je—s(211+212)

Also, L, = the product of transmittance of two non-touching loops
(loops with no common nodes)

2 L, =sum of L, values for all possible pairwise combinations of non-touching loops.



5 - 1+p - 1+pL 28
Pg AN -mY ™ p1 ~pLY
e—sri ' eWSTQ.
1-m

In the present example (2-tube) model), the only non-touching pair of loops
involves Loop 1 and Loop 2.

=L, =)L, = (_P1Pge_32“)(—p1pLe‘32*2)

s(211+2712)

= pipgpLE

Since L, is the product of three non-touching loops (loops with no common nodes),
L, = O for this example.



29
Therefore, for this example,

A=1-2L,+2L,

S(Z’E1+2’Ez)

=1-[-pipge " — pipLe " — pgpi (1- pf)e ") | + plpyp €

— ‘l + p1pge—5211 + P1P|_e_5212 + pgpLe—s(21:1+21:2)

Also, A, isthe value of A forthe flow graph that results when forward path T, is

removed. In our case, there are no loops left when T, is removed.

:>A1:1_2L1+2L2:1

) TA,

Overall, the expression for T becomes T =1 _— &
A A

2

1+ .
["9)(1 +p1)(1+ pL e
1+ pipge " + pipLe St + pgpLe”

= H(s)

s(211+2712)

To obtain an expression for the frequency response, let s = j€2 in H(s).



