ECE 8440 Unit 12

More on finite precision representations (See section 6.7)
Already covered: quantization error due to converting an analog signal to a digital signal.

Other types of errors due to using a finite no. of bits:

e Round-off error due to rounding of products

Example: multiplying two B+1 bit numbers produces a 2B+1 bit product (or 2B+2 bit product),
and it may be necessary to round or truncate the product to the closest B+1 bit representation.

e Coefficient quantization errors.

Example: Design of digital filters produces filter coefficients that cannot be represented perfectly
using a finite number of bits.

e Qverflow errors

Example: In the process of implementing a digital filter, an intermediate term may be generated
that is larger than the maximum value that can be accurately represented with the available
number of bits.



Number Systems for Binary Representations

- Sign and magnitude (one bit indicates + or -, the remaining bits represent the magnitude.

- One's complement (binary values are negated by changing 0's to 1's and 1's to 0's)

- Two's complement (more often used) (binary values are negated by changing 0's to 1's and
1's to 0's, then adding 1 to the least significant bit position.)

We will use the two's complement system to represent scaled fractions, as shown below:

X=X _ [_bo + ibiz—i] (equation 6.75)
i=1

where b, and each b, of the termsis either 0 or 1. The range of values that can be represented
this way is from -X_, to (almost) X, , where X_ is an arbitrary scale factor.

Ifb,=1 and all otherb. terms are 0, thenx=- X, . Example: 10000000000...0
Ifbz 0 and all otherb, terms are 1, then x --> X, as the number of bits --> oo.

Example: 01111111111...1

In general, an infinite number of bits is required for a perfect representation. If the number of
bits for a two's complement representation is limited to B+1, then the quantized representation
IS

B _ )
X=Qy(x)=X_ L_bo + ;biZ"'] = X Xg: (equation 6.76)



The above representation involves an implicit binary point between the upper two bits. For 3
example, x, has the following form:

%, =b bbb, b
If B =2, then
1.00=-1
1.01=-.75
1.10= -5
1.11=-.25
0.00= 0
0.01= .25
0.10= .5
0.11= .75

If a total of B bits are used (in addition tob, ), the resolution (smallest difference between values
that can be represented) is

A=X 2°®,

The quantization error is defined as the difference between the desired value and the closest
value that can be represented using B+1 bits:

e = Qg[x}—x. (equation 6.79)




If values to be quantized are rounded to the closest two-complement representation that  uses B+ 14
bits, then the range of quantization error is

—-(A/2)<e<(A/2).

If instead the true values are truncated (rounded down) to the next available B+1 bit two's complement
representation, the range of quantization error is
-A<e<O.

Effect of Coefficient Quantization

Designing a digital filter produces a system function H(z) whose parameters are the multipliers of
powers of z in the numerator and denominator of H(z).

When these are given an imperfect representation due to using a finite number of bits, these modified
coefficient values effectively cause the locations of the poles and zeros of the designed filter to move to
modified positions in the z-plane. This, in turn, causes the frequency response of the filter to change.

Example: (12-th order bandpass elliptic filter)
Design specifications:

0.99< [H(e™)I <1.01, 0.3r<w<0.4xn
|H(e*)| <0.01, ®<029t and 04Ir<ow<m



Table 6.1 shows the “unquantized” values (64-bit floating point, 15 decimal digital
accuracy) of the a, and b, coefficients of the designed filter.

TABLE 6.1 UNQUANTIZED DIRECT-FORM
COEFFICIENTS FOR A 12TH-ORDER ELLIPTIC FILTER
k by aj
0 0.01075998066934 1.00000000000000
i -(.05308642937079 -5.22581881365349
2 0.16220359377307 16.78472670299535
3 -{).34568964826145 -36.88325765883139
4 0.57751602647909 62.39704677556246
3 -0.77113336470234 -82.65403268814103
6 0.85093484466974 - 88.67462886449437
7 -0.77113336470234 ~76.47294840588104
8 0.57751602647909 53.41004513122380
9 -(1.34568964826145 -29.20227549870331
10 0.16220359377307 12.29074563512827
11 -0.05308642937079 -3.53766014466313
12 0.01075998066934 0.62628586102551




6
Table 6.2 shows the locations of poles and zeros for the filter with unquantized coefficients.

TABLE6.2 ZERGS AND POLES OF UNQUANTIZED 12TH-ORDER
ELLIPTIC FILTER.

/

koo ekl Leg || Ldyy

1.0 £1.65799617112574  0.92299356261936  £1.15956955465354
1.0 £ 0.65411612347125  0.92795010695052  +1.02603244134180
1.0 £ 1.33272553462313  0.96600955362927  +£1.23886921536789
1.0 £ 0.87998582176421  0.97053510266510  £+0.95722682653782
1.0 £ 1.28973944928129  0.99214245914242  £1.26048962626170
1.0 £0.91475122403407  0.99333628602629  £+0.93918174153968
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Figure 6.48 provides a plot of the poles and zeros for a direct form (non-factored)
Implementation for

(a) the case of unquantized coefficients and
(b) for the case of coefficients represented using 16-bit accuracy

Figure 6.48 IR coefficient
guantization example. (a) Poles and
zeros of H(2) for unquantized

ne  Coefficients. (b) Poles and zeros for
16-bit quantization of the direct form
coefficients.

Re

(a)

Note that for the case of 16-bit coefficient, the filter has become unstable,
poles have moved outside the unit circle in the z-plane.



If the filter is factored into the product of six 2" order sections, the unquantized
coefficients are shown below

TABLE 6.3 UNQUANTIZED CASCADE-FORM
COEFFICIENTS FOR A 12TH-ORDER ELLIPTIC FILTER

=

aig o boy bk by

ool

0.737904  -0.851917 0.137493  0.023948  0.137493
0.961757  -0.861091  0.281558  -0.446881  0.281558
0.629578  -0.933174  0.545323  -0.257205  0.545323
1117648  -0.941938  0.706400  -0.900183  0.706400
0.605903  -0.984347  0.769509  -0.426879  0.769509
1.173028  -0.986717 0937657  -1.143918  0.937657
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If these coefficients are quantized to a 16-bit two-complement representations,

they have the following values:

TABLE 6.4 SIXTEEN-BIT QUANTIZED CASCADE-FORM COEFFICIENTS FOR A
12TH-ORDER ELLIPTIC FILTER

k

a1k a2k bok b1k bak
1 24196 x271B5 27880 x 2=15 17805 x 217 3443 x 2717 17805 x 2717
2 31470 x 2715 28180 x 2715 18278 x 2716 29131 x2-16 18278 x 2~16
320626 x 2715 30522 x 2715 17556 x 2715 8167 x 2715 17556 x 2-15
4 18292 x 271 30816 x 2715 22854 x 2715 20214 x 2-15 22854 x 2-15
519831 x 275 32234 x 2715 25333 x 2715 13957 x 2715 25333 x 215
6 19220 x 2714 32315 x 2715 15039 x 214 15039 x 2714

—18387 x 2714




For better comparison, the coefficients for the k = 1 cascade section are shown below for both
the "unquantized" case and the 16-bit quantized case:

di1 dyq by, by, by,
unquantized 0.737904 -0.851917 0.137493 0.023948 0.137493
16-bit 2's comp. 0.738403 -0.850830 0.135841 0.026268 0.135841

The following figure shows the frequency of the filter for the following cases:
e "unquantized" coefficients (parts a and b of figure)

e 16-bit coefficients, with filter implemented in cascade form (part c of figure)
* 16-bit coefficients, with filter implemented in parallel form (part d of figure)
* 16-bit coefficients, with filter implemented in direct form (part e of figure)
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Key points from figure: 12

e Minor degradation in response for 16-bit cascade and 16-bit parallel forms.

e Major degradation in response for 16-bit direct form.

The above is an example of the following general case:

If poles or zeros are tightly clustered, then small errors in the filter coefficients can cause a
significant shift in pole or zero positions (and therefore major changes in the frequency
response.) Therefore, it is almost always best to implement any IR filter in the cascade or
parallel form.

Note: Because they implement different complex-conjugate poles and zeros independently, the
cascade and parallel forms are generally much less sensitive to coefficient quantization errors, as
compared to the direct form.

Possible location of poles and zeros using quantized coefficients.

Consider a section order filter with poles at
z=re® and z-rek.

The denominator polynomial can be written as
(1-z7re®)(1-zre™®) =1-2rcos(0)z" +réz2



The direct form implementation of this filter is shown below:

>
> O~ > Py

x[n] T

Figure 6.49 Direct-form
z implementation of a complex-conjugate

< pole pair.
2

2r cos 6

If the coefficients —2rcos(e) and r® are represented using 4-bit accuracy, the possible location of
poles in the z-plane are shown below (for the first quadrant in the z-plane):

z-plane

1.00 F—~, o Realizable pole positions




In the above plot, note that the spacing of possible pole locations is not uniform. If 7-bit 14
guantization is used to represent the coefficients for this filter, the possible pole locations
become much more dense, as shown in the figure below:

$m

z-plane

Figure 6.50 Pole-locations for the
2"-order IIR direct-form system of
Figure 6.49. (a) Four-bit quantization of
Coeficients (b) Seven-bit quantization



Another implementation of a 2-pole section is shown below:

o— o oV (h)

—rsin g

y[n] Figure 6.51 Coupled-form
implementation of a complex-conjugate
pole pair.

This implementation could be implemented using the following two difference equations:
v(n) = x(n) —rsin(8)y(n-1) +rcos(8)v(n-1)

and

y(n) =rsin(6)v(n-1) +rcos(8)y(n-1)

As seen above, the coefficients of this implementation are rsin(e)and rcos(0).

If these coefficients are quantized to 4-bit accuracy (part a of figure) or to 7-bit accuracy (part b
of figure), the possible pole locations are shown below:

15
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Figure 6.52 Pole locations for coupled-form 2"d-order IIR system of Figure 6.51.
(a) Four-bit quantization of coefficients (b) Seven-bit quantization

Effects of Coefficient Quantization in FIR Filters

In FIR systems, the filter coefficients are one and the same as the h(n) values, since for a causal
system M-th order system,

y(n) = I(Zi,kax(n -k)
and

y(n) = 3 h(k)x(n—k).
k=0



We may relate the desired h(n) values with the quantized values h(n) using 17
h(n) = h(n) + Ah(n)
The system implemented using the quantized coefficients can then be expressed as

H(z) = ﬁ h(n)z™" = H(z) + AH(z)
n=0

where

AH(2) = i Ah(k)z™.
k=0

The following figure provides a block diagram representation of coefficient quantization for the
case of FIR filters:

—>1 H(z)

*[n] y[n Figure 6.53 representation of
AH(z) coefficient quantization in FIR systems

A 4

Research has shown that coefficient quantization in FIR filters has the most effect if zeros of the
filter are close together. (This is consistent with the case of zeros and poles of IIR filters.) Note:
Since zeros of linear phase FIR filters are typically not as tightly clustered as zeros of IIR filters, it
is common practice to implement FIR filters directly, without factoring into lower order sections.




Example: Effect of Quantization of Coefficients in Optimum FIR Lowpass Filter
Design specifications: 0.99< IH(e*)l <1.01, 0<wm<0.4n

|H(e’)| <0.001, 0.6n <w <=

The lowest order FIR filter that satisfies these specification is M = 27.

The table below provides a comparison of the "unquantized" coefficients with coefficients
guantized to 16 bits, 14 bits, 13 bits, and 8 bits.

TABLE6.5 UNQUANTIZED AND QUANTIZED COEFFICIENTS FOR AN OPTIMUM
FIR LOWPASS HILTER (M = 27)

Coefficient Unquantized 16 bits 14 bits 13 bits 8 bits
RIO] = H[27] 1.359657 x 1073 45 x 218 11 x 2-13 6x 2712 0x 277
hl1] = h[26]  —1.616993 x 1072 ~53x 2715 3 w13 —7 x 2712 0x277
n[2] = h[25]  —7.738032 x 1073 ~254 %271 a3 2713 32 %2712 Ly k2T
R3] = hi24]  —~2.686841 x 1073 ~88x 27 oo w2713 gy x2-i2 Hx277
R[4] = h{23] 1.255246 % 1072 411 x 2715 103 x 2713 51 x 2742 2 x 277
h5] = h{22] 6.591530 % 1073 216 x 2715 54 x 213 27 x 2712 1x277
hI6] = h[21] 2217952 x 1072 —727x 2715 g x 271 91k 2712 3T

B{7) = h{20] —1.524663 x 1072 500 x 2710 125 x 2710 e x272 o w7

hi8] = h[19] 3.720668 x 1072 1219 x 2713 305 x 213 152 x 2712 §x277
h{9] = h[18] 3233332 x 1072 1059 x 2719 265 x 2713 32 x 2712 4 %2771
R[10] = A{17]  —6.537057 x 1072 —2142 x 271 536 x 2713 268 x 2712 g2
R{11] = h{16] ~7.528754 x 1072 2467 x 21 _617x2713  308x2712  _10x27
h[12} = R[15] 1.560970 x 10! 5115 x 2715 1279 x 213 639 x 212 20 % 277
A{13] = h[14] 4394094 x 1071 14399 x 2-15 3600 x 271F 1800 x 2712 56 x 277




The approximation error is shown below for the cases of 16 bits, 14 bits, 13 bits, and 8 bits, 19
along with the approximation error and the frequency response for the unquantized case.

20 0.010
0
0.005
20 - o
3
S -0 gm 0 A
-60 -
-0.005 |-
-80 -
-100 l L | -0.010 l 1 | |
027 0.47 0.6m 0.8 ™ 0 0.2m 0.4 0.6 0.87 T
Radian frequency (w) Radian frequency ()
() (b)
Figure 6.54 FIR quantization example.
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Figure 6.54 (continued)

(d) Approximation error for 14-bit quantization.

(e) Approximation error for 13-bit quantization.

(f) Approximation error for 8-bit quantization.
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Note that the filter design specifications are met when 16 bit or 14 bits are used, and are
almost satisfied for the case of 13 bits. However, for the 8 bit case, the approximation error
exceeds the specification by a factor of approximately 2 in the passband and by a factor of
approximately 20 in the stopband.

To relate the observations of this example with previous statements about the relationship of
sensitivity to clustering of zeros, the zero locations for the 16-bit case, 13-bit case, and 8-bit case
are shown below, along with the zero locations for the unquantized case.

FIR Lowpass Filter: FIR Lowpass Filter:
Unquantized Coefficients 16-bit Coefficients
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FIR Lowpass Filter: FIR Lowpass Filter:

13-bit Coefficients 8-bit Coefficients
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Figure 6. 55 Effect of impulse response quantization on zeros of H(z)
(a) Unquantized (b) 16-bit quantization

(c) 13-bit quantization
(d) 8-bit quantization

In the above figure, note the increased clustering of zeros on the unit circle for the 13 bit case,
and especially for the 8-bit case.
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Maintaining Generalized Linear Phase in FIR filters, Even with Quantization of Coefficients. 23

If an FIR filter is implemented directly (without factoring), then generalized linear phase is
automatically maintained after guantization, since the symmetry conditions that guarantee
generalized linear phase are not affected by quantization.

Recall that the symmetry conditions are h(n) = h(M-n) for Types | and Il filters and h(n) = -h(M-n)
for Types lll and IV filters. Quantization affects h(n) and h(M - n) exactly the same, therefore
preserving symmetric conditions.

If it is desired to implement an FIR filter in factored form, we can preserve generalized linear
phase even though quantization is present, by recalling that zeros of a generalized phase filters
occur in special patterns, each of which is considered below:

Group of 2 consisting of 2 complex-conjugate zeros on unit circle

- The corresponding second-order factor of H(z) has the form
(1-z"e®)(1-z"e®)=1-2"2cos(0) +1

Any quantization error in representing the value of 2cos(8) changes only the angle, not the radius

of the zeros. Thus, they will still be complex conjugates on the unit circle.



Group of 4 consisting of 2 complex-conjugate zeros not on unit circle and their reciprocals 24

- The corresponding fourth order factor of H(z) has the form

-1 1ej")(1 - z‘11

(1-zre®)(1-zre ®)(1-2 - -

e )
-2
=(1-z"2rcos(8) +z%r?)(1- 2" %cos(e) + Zr—z)

=(1-z"2rcos(8) + Z‘Zrz)rlz(r2 —z72rcos(8) +z2)

Since both pairs of zeros have the same coefficients, 2r cos(8) and r?, any quantization error will
affect both zero-pairs the same way, and the conjugate-reciprocal property of the 4 zeros will be
preserved.

Group of two real zeros not on unit circle

a1

(-z'a)(1-z"1y=1- 2‘1(a+%)+ 72

If quantization error is present in the representation of the multiplier(a+ 5) , the two zeros
involved will still be real reciprocals, as shown below:

First, let c =(a +%) .
The zeros of 1-cz'+z2 are

c+vc? -4 and c-vct -4

2 2



Now show that the reciprocal of the first term above is in fact the second term:

2 _ 2(c-Vc?2-4)

c+Vc? -4 (c+yc?-4)(c-c?-4)

Z(C—\/C — ) c-+c? -

—(c?-4) 2

zerosatlor-1

Factors of the form (1-z7") and (1+z") are not subject to quantization error.
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