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More	
  on	
  finite	
  precision	
  representa.ons	
  	
  (See	
  sec.on	
  6.7)	
  
Already	
  covered:	
  quan.za.on	
  error	
  due	
  to	
  conver.ng	
  an	
  analog	
  signal	
  to	
  a	
  digital	
  signal.	
  
	
  
Other	
  types	
  of	
  errors	
  due	
  to	
  using	
  a	
  finite	
  no.	
  of	
  bits:	
  	
  
	
  
•	
  Round-­‐off	
  error	
  due	
  to	
  rounding	
  of	
  products	
  
	
  
Example:	
  	
  mul.plying	
  two	
  B+1	
  bit	
  numbers	
  produces	
  a	
  2B+1	
  bit	
  product	
  (or	
  2B+2	
  bit	
  product),	
  
and	
  it	
  may	
  be	
  necessary	
  to	
  round	
  or	
  truncate	
  the	
  product	
  to	
  the	
  closest	
  	
  B+1	
  bit	
  representa.on.	
  
	
  
•	
  Coefficient	
  quan.za.on	
  errors.	
  	
  	
  
	
  
Example:	
  	
  Design	
  of	
  digital	
  filters	
  produces	
  filter	
  coefficients	
  that	
  cannot	
  be	
  represented	
  perfectly	
  
using	
  a	
  finite	
  number	
  of	
  bits.	
  
	
  	
  
•	
  Overflow	
  errors	
  	
  
	
  
Example:	
  	
  In	
  the	
  process	
  of	
  implemen.ng	
  a	
  digital	
  filter,	
  an	
  intermediate	
  term	
  may	
  be	
  generated	
  
that	
  is	
  larger	
  than	
  the	
  maximum	
  value	
  that	
  can	
  be	
  accurately	
  represented	
  with	
  the	
  available	
  
number	
  of	
  bits.	
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Number	
  Systems	
  	
  for	
  Binary	
  Representa.ons	
  
-­‐  Sign	
  and	
  magnitude	
  (one	
  bit	
  indicates	
  +	
  or	
  -­‐,	
  the	
  remaining	
  bits	
  represent	
  the	
  magnitude.	
  
-­‐  One's	
  complement	
  	
  	
  (binary	
  values	
  are	
  negated	
  by	
  changing	
  0's	
  to	
  1's	
  and	
  1's	
  to	
  0's)	
  
-­‐  Two's	
  complement	
  (more	
  oYen	
  used)	
  (binary	
  values	
  are	
  negated	
  by	
  changing	
  0's	
  to	
  1's	
  and	
  

1's	
  to	
  0's,	
  then	
  adding	
  1	
  to	
  the	
  least	
  significant	
  bit	
  posi.on.)	
  
	
  
We	
  will	
  use	
  the	
  two's	
  complement	
  system	
  to	
  represent	
  scaled	
  frac.ons,	
  as	
  shown	
  below:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
   	
  (equa.on	
  6.75)	
  

where	
  	
  	
  	
  	
  	
  and	
  each	
  	
  	
  	
  	
  of	
  the	
  	
  terms	
  is	
  either	
  0	
  or	
  1.	
  	
  The	
  range	
  of	
  values	
  that	
  can	
  be	
  represented	
  
this	
  way	
  is	
  from	
  -­‐Xm	
  to	
  (almost)	
  Xm	
  ,	
  where	
  Xm	
  is	
  an	
  arbitrary	
  scale	
  factor.	
  
If	
  	
  	
  	
  =1	
  and	
  all	
  other	
  	
  	
  	
  terms	
  are	
  0,	
  then	
  x	
  =	
  -­‐	
  Xm	
  .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Example:	
  	
  10000000000.	
  .	
  .	
  0	
  
If	
  	
  	
  =	
  0	
  and	
  all	
  other	
  	
  	
  	
  terms	
  are	
  1,	
  then	
  x	
  -­‐-­‐>	
  Xm	
  as	
  the	
  number	
  of	
  bits	
  -­‐-­‐>	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Example:	
  	
  01111111111.	
  .	
  .	
  1	
  
	
  
In	
  general,	
  an	
  infinite	
  number	
  of	
  bits	
  is	
  required	
  for	
  a	
  perfect	
  representa.on.	
  	
  If	
  the	
  number	
  of	
  
bits	
  for	
  a	
  two's	
  complement	
  representa.on	
  is	
  limited	
  to	
  B+1,	
  then	
  the	
  quan.zed	
  representa.on	
  
is	
  
	
  	
  
	
  
	
  

 
x = Xm −b0 + bi2

− i

i=1

∞

∑
⎛

⎝
⎜

⎞

⎠
⎟

 b0  bi

 b0  bi

 b0  bi ∞.

x̂ = QB(x) = Xm −b0 + bi2
−i

i=1

B

∑
⎛

⎝⎜
⎞

⎠⎟
= Xmx̂B. (equa.on	
  6.76)	
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The	
  above	
  representa.on	
  involves	
  an	
  implicit	
  binary	
  point	
  between	
  the	
  upper	
  two	
  bits.	
  	
  For	
  
example,	
  	
  	
  	
  	
  	
  has	
  the	
  following	
  form:	
  
	
  
If	
  B	
  =	
  2,	
  then	
  
1.00	
  =	
  -­‐1	
  
1.01	
  =	
  -­‐.75	
  
1.10	
  =	
  	
  -­‐.5	
  
1.11	
  =	
  -­‐.25	
  
0.00	
  =	
  	
  	
  0	
  
0.01	
  =	
  	
  .25	
  
0.10	
  =	
  	
  .5	
  	
  
0.11	
  =	
  	
  .75	
  
	
  
If	
  a	
  total	
  of	
  B	
  bits	
  are	
  used	
  (in	
  addi.on	
  to	
  	
  	
  	
  	
  ),	
  the	
  resolu.on	
  (smallest	
  difference	
  between	
  values	
  
that	
  can	
  be	
  represented)	
  is	
  
	
  
	
  
The	
  quan.za.on	
  error	
  is	
  defined	
  as	
  the	
  difference	
  between	
  the	
  desired	
  value	
  and	
  the	
  closest	
  
value	
  that	
  can	
  be	
  represented	
  using	
  B+1	
  bits:	
  

	
   	
   	
   	
   	
   	
  (equa.on	
  6.79)	
  

  ̂xB

  ̂xB = b0.b1b2b3...bB

 b0

Δ = Xm2−B.

e = QB[x} − x.
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If	
  values	
  to	
  be	
  quan.zed	
  are	
  rounded	
  to	
  the	
  closest	
  two-­‐complement	
  representa.on	
  that	
  	
  	
  	
  	
  	
  	
  uses	
  	
  B	
  +	
  1	
  
bits,	
  then	
  the	
  range	
  of	
  quan.za.on	
  error	
  is	
  
	
  
	
  
If	
  instead	
  the	
  true	
  values	
  are	
  truncated	
  (rounded	
  down)	
  to	
  the	
  next	
  available	
  B+1	
  bit	
  two's	
  complement	
  
representa.on,	
  the	
  range	
  of	
  quan.za.on	
  error	
  is	
  
	
  
	
  
Effect	
  of	
  Coefficient	
  Quan.za.on	
  
Designing	
  a	
  digital	
  filter	
  produces	
  a	
  system	
  func.on	
  H(z)	
  whose	
  parameters	
  are	
  the	
  mul.pliers	
  of	
  
powers	
  of	
  z	
  in	
  the	
  numerator	
  and	
  denominator	
  of	
  H(z).	
  	
  	
  
	
  
When	
  these	
  are	
  given	
  an	
  imperfect	
  representa.on	
  due	
  to	
  using	
  a	
  finite	
  number	
  of	
  bits,	
  these	
  modified	
  
coefficient	
  values	
  effec.vely	
  cause	
  the	
  loca.ons	
  of	
  the	
  poles	
  and	
  zeros	
  of	
  the	
  designed	
  filter	
  to	
  move	
  to	
  
modified	
  posi.ons	
  in	
  the	
  z-­‐plane.	
  	
  This,	
  in	
  turn,	
  causes	
  the	
  frequency	
  response	
  of	
  the	
  filter	
  to	
  change.	
  
	
  
	
  
	
  
Example:	
  	
  (12-­‐th	
  order	
  bandpass	
  ellip.c	
  filter)	
  
Design	
  specifica.ons:	
  
	
  
	
  
	
  
	
  	
  
	
  

−(Δ / 2) < e ≤ (Δ / 2).

−Δ < e ≤ 0.

  0.99 ≤  | H(ejω) |  ≤ 1.01,              0.3π ≤ ω ≤ 0.4π

| H(ejω) |  ≤ 0.01 ,              ω ≤ 0.29π   and   0.41π ≤ ω ≤ π
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Table	
  6.1	
  shows	
  the	
  “unquan.zed”	
  values	
  (64-­‐bit	
  floa.ng	
  point,	
  15	
  decimal	
  digital	
  	
  
	
  accuracy)	
  of	
  the	
  ak	
  and	
  bk	
  coefficients	
  of	
  the	
  designed	
  filter.	
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Table	
  6.2	
  shows	
  the	
  loca.ons	
  of	
  poles	
  and	
  zeros	
  for	
  the	
  filter	
  with	
  unquan.zed	
  coefficients.	
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Figure	
  6.48	
  provides	
  a	
  plot	
  of	
  the	
  poles	
  and	
  zeros	
  for	
  a	
  direct	
  form	
  (non-­‐factored)	
  
Implementa.on	
  for	
  
(a)  the	
  case	
  of	
  unquan.zed	
  coefficients	
  and	
  	
  
(b)  for	
  the	
  case	
  of	
  coefficients	
  represented	
  using	
  16-­‐bit	
  accuracy	
  

Note	
  that	
  for	
  the	
  case	
  of	
  16-­‐bit	
  coefficient,	
  the	
  filter	
  has	
  become	
  unstable,	
  	
  
poles	
  have	
  moved	
  outside	
  the	
  unit	
  circle	
  in	
  the	
  z-­‐plane.	
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If	
  the	
  filter	
  is	
  factored	
  into	
  the	
  product	
  of	
  six	
  2-­‐nd	
  order	
  sec.ons,	
  the	
  unquan.zed	
  
coefficients	
  are	
  shown	
  below	
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If	
  these	
  coefficients	
  are	
  quan.zed	
  to	
  a	
  16-­‐bit	
  two-­‐complement	
  representa.ons,	
  
	
  they	
  have	
  the	
  following	
  values:	
  

TABLE	
  6.4	
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For	
  bejer	
  comparison,	
  the	
  coefficients	
  for	
  the	
  k	
  =	
  1	
  cascade	
  sec.on	
  are	
  shown	
  below	
  for	
  both	
  
the	
  "unquan.zed"	
  case	
  and	
  the	
  16-­‐bit	
  quan.zed	
  case:	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  a11 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  a21 	
   	
  	
  	
  	
  	
  b01 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  b11 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  b21	
  
unquan.zed 	
  	
  	
  	
  	
  	
  	
  0.737904	
  	
  	
  	
  	
  	
  	
  -­‐0.851917	
  	
  	
  	
  	
  	
  	
  	
  0.137493	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0.023948	
  	
  	
  	
  	
  	
  	
  	
  	
  0.137493	
  
16-­‐bit	
  2's	
  comp.	
  	
  	
  	
  	
  	
  	
  0.738403	
  	
  	
  	
  	
  	
  	
  	
  -­‐0.850830	
  	
  	
  	
  	
  	
  	
  	
  0.135841	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0.026268	
  	
  	
  	
  	
  	
  	
  	
  	
  0.135841 	
  	
  

	
  	
  
The	
  following	
  figure	
  shows	
  the	
  frequency	
  of	
  the	
  filter	
  for	
  the	
  following	
  cases:	
  
•	
  "unquan.zed"	
  coefficients	
  (parts	
  a	
  and	
  b	
  of	
  figure)	
  
•	
  16-­‐bit	
  coefficients,	
  with	
  filter	
  implemented	
  in	
  cascade	
  form	
  (part	
  c	
  of	
  figure)	
  
•	
  16-­‐bit	
  coefficients,	
  with	
  filter	
  implemented	
  in	
  parallel	
  form	
  (part	
  d	
  of	
  figure)	
  
•	
  16-­‐bit	
  coefficients,	
  with	
  filter	
  implemented	
  in	
  direct	
  form	
  (part	
  e	
  of	
  figure)	
  
	
  

unquan.zed	
  
case	
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unquan.zed	
  case	
   16-­‐bits,	
  cascade	
  form	
  

16-­‐bits,	
  parallel	
  form	
  
16-­‐bits,	
  direct	
  form	
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Key	
  points	
  from	
  figure:	
  	
  	
  
•	
  Minor	
  degrada.on	
  in	
  response	
  for	
  16-­‐bit	
  cascade	
  and	
  16-­‐bit	
  parallel	
  forms.	
  
•	
  Major	
  degrada.on	
  in	
  response	
  for	
  16-­‐bit	
  direct	
  form.	
  
	
  
The	
  above	
  is	
  an	
  example	
  of	
  the	
  following	
  general	
  case:	
  
	
  
If	
  poles	
  or	
  zeros	
  are	
  .ghtly	
  clustered,	
  then	
  small	
  errors	
  in	
  the	
  filter	
  coefficients	
  can	
  cause	
  a	
  
significant	
  shiY	
  in	
  pole	
  or	
  zero	
  posi.ons	
  (and	
  therefore	
  major	
  changes	
  in	
  the	
  frequency	
  
response.)	
  	
  Therefore,	
  it	
  is	
  almost	
  always	
  best	
  to	
  implement	
  any	
  IIR	
  filter	
  in	
  the	
  cascade	
  or	
  
parallel	
  form.	
  
	
  	
  
Note:	
  	
  Because	
  they	
  implement	
  different	
  complex-­‐conjugate	
  poles	
  and	
  zeros	
  independently,	
  the	
  
cascade	
  and	
  parallel	
  forms	
  are	
  generally	
  much	
  less	
  sensi.ve	
  to	
  coefficient	
  quan.za.on	
  errors,	
  as	
  
compared	
  to	
  the	
  direct	
  form.	
  
	
  
Possible	
  loca.on	
  of	
  poles	
  and	
  zeros	
  using	
  quan.zed	
  coefficients.	
  
	
  
Consider	
  a	
  sec.on	
  order	
  filter	
  with	
  poles	
  at	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  
The	
  denominator	
  polynomial	
  can	
  be	
  wrijen	
  as	
  
	
  
	
  

 z = rejθ  z = re− jθ

 (1− z−1rejθ)(1− z−1re− jθ) = 1− 2r cos(θ)z−1 + r2z−2
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The	
  direct	
  form	
  implementa.on	
  of	
  this	
  filter	
  is	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
If	
  the	
  coefficients	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  are	
  represented	
  using	
  4-­‐bit	
  accuracy,	
  the	
  possible	
  loca.on	
  of	
  
poles	
  in	
  the	
  z-­‐plane	
  are	
  shown	
  below	
  (for	
  the	
  first	
  quadrant	
  in	
  the	
  z-­‐plane):	
  
	
  

  −2r cos(θ)  r2

Figure	
  6.49	
  Direct-­‐form	
  
implementa.on	
  of	
  a	
  complex-­‐conjugate	
  
pole	
  pair.	
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In	
  the	
  above	
  plot,	
  note	
  that	
  the	
  spacing	
  of	
  possible	
  pole	
  loca.ons	
  is	
  not	
  uniform.	
  	
  	
  If	
  7-­‐bit	
  
quan.za.on	
  is	
  used	
  to	
  represent	
  the	
  coefficients	
  for	
  this	
  filter,	
  the	
  possible	
  pole	
  loca.ons	
  
become	
  much	
  more	
  dense,	
  as	
  shown	
  in	
  the	
  figure	
  below:	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   Figure	
  6.50	
  Pole-­‐loca.ons	
  for	
  the	
  

2nd-­‐order	
  IIR	
  direct-­‐form	
  system	
  of	
  
Figure	
  6.49.	
  	
  (a)	
  Four-­‐bit	
  quan.za.on	
  of	
  
Coeficients	
  	
  (b)	
  Seven-­‐bit	
  quan.za.on	
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Another	
  implementa.on	
  of	
  a	
  2-­‐pole	
  sec.on	
  is	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
This	
  implementa.on	
  could	
  be	
  implemented	
  using	
  the	
  following	
  two	
  difference	
  equa.ons:	
  
	
  	
  
and	
  
	
  
As	
  seen	
  above,	
  the	
  coefficients	
  of	
  this	
  implementa.on	
  are	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  	
  
If	
  these	
  coefficients	
  are	
  quan.zed	
  to	
  4-­‐bit	
  accuracy	
  (part	
  a	
  of	
  figure)	
  or	
  to	
  7-­‐bit	
  accuracy	
  (part	
  b	
  
of	
  figure),	
  the	
  possible	
  pole	
  loca.ons	
  are	
  shown	
  below:	
  
	
  
	
  

 v(n) = x(n) − r sin(θ)y(n −1) + r cos(θ)v(n −1)

 y(n) = r sin(θ)v(n −1) + r cos(θ)y(n −1)

  r sin(θ)   r cos(θ)

Figure	
  6.51	
  	
  Coupled-­‐form	
  
implementa.on	
  of	
  a	
  complex-­‐conjugate	
  
pole	
  pair.	
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Effects	
  of	
  Coefficient	
  Quan.za.on	
  in	
  FIR	
  Filters	
  
In	
  FIR	
  systems,	
  the	
  filter	
  coefficients	
  are	
  one	
  and	
  the	
  same	
  as	
  the	
  h(n)	
  values,	
  since	
  for	
  a	
  causal	
  
system	
  M-­‐th	
  order	
  system,	
  	
  
	
  
	
  
and	
  
	
  
	
  

 
y(n) = bkx(n − k)

k=0

M

∑

y(n) = h(k)x(n − k)
k=0

M

∑ .

Figure	
  6.52	
  Pole	
  loca.ons	
  for	
  coupled-­‐form	
  2nd-­‐order	
  IIR	
  system	
  of	
  Figure	
  6.51.	
  	
  
	
  (a)	
  Four-­‐bit	
  quan.za.on	
  of	
  coefficients	
  (b)	
  Seven-­‐bit	
  quan.za.on	
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We	
  may	
  relate	
  the	
  desired	
  h(n)	
  values	
  with	
  the	
  quan.zed	
  values	
  	
  	
  	
  	
  	
  	
  	
  using	
  
	
  
The	
  system	
  implemented	
  using	
  the	
  quan.zed	
  coefficients	
  can	
  then	
  be	
  expressed	
  as	
  

where	
  
	
  
	
  
The	
  following	
  figure	
  provides	
  a	
  block	
  diagram	
  representa.on	
  of	
  coefficient	
  quan.za.on	
  for	
  the	
  
case	
  of	
  FIR	
  filters:	
  
	
  
	
  
	
  
	
  
	
  
	
  
Research	
  has	
  shown	
  that	
  coefficient	
  quan.za.on	
  in	
  FIR	
  filters	
  has	
  the	
  most	
  effect	
  if	
  zeros	
  of	
  the	
  
filter	
  are	
  close	
  together.	
  	
  (This	
  is	
  consistent	
  with	
  the	
  case	
  of	
  zeros	
  and	
  poles	
  of	
  IIR	
  filters.)	
  	
  	
  Note:	
  	
  
Since	
  zeros	
  of	
  linear	
  phase	
  FIR	
  filters	
  are	
  typically	
  not	
  as	
  .ghtly	
  clustered	
  as	
  zeros	
  of	
  IIR	
  filters,	
  it	
  
is	
  common	
  prac.ce	
  to	
  implement	
  FIR	
  filters	
  directly,	
  without	
  factoring	
  into	
  lower	
  order	
  sec.ons.	
  
	
  
	
  
	
  

  ̂h(n)

 ̂h(n) = h(n) + Δh(n)

 
Ĥ(z) = ĥ(n)z−n

n=0

M

∑ = H(z) + ΔH(z)

ΔH(z) = Δh(k)z−n

k=0

M

∑ .

Figure	
  6.53	
  representa.on	
  of	
  
coefficient	
  quan.za.on	
  in	
  FIR	
  systems	
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Example:	
  	
  Effect	
  of	
  Quan.za.on	
  of	
  Coefficients	
  in	
  Op.mum	
  FIR	
  Lowpass	
  Filter	
  
Design	
  specifica.ons:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
The	
  lowest	
  order	
  FIR	
  filter	
  that	
  sa.sfies	
  these	
  specifica.on	
  is	
  M	
  =	
  27.	
  	
  	
  
	
  
The	
  table	
  below	
  provides	
  a	
  comparison	
  of	
  the	
  "unquan.zed"	
  coefficients	
  with	
  coefficients	
  
quan.zed	
  to	
  16	
  bits,	
  14	
  bits,	
  13	
  bits,	
  and	
  8	
  bits.	
  	
  	
  
	
  

 0.99 ≤  | H(ejω ) |  ≤1.01,           0 ≤ ω ≤ 0.4π

 | H(ejω ) |  ≤ 0.001,          0.6π ≤ ω ≤ π
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The	
  approxima.on	
  error	
  is	
  shown	
  below	
  for	
  the	
  cases	
  of	
  16	
  bits,	
  14	
  bits,	
  13	
  bits,	
  and	
  8	
  bits,	
  	
  	
  
along	
  with	
  the	
  approxima.on	
  error	
  and	
  the	
  frequency	
  response	
  for	
  the	
  unquan.zed	
  case.	
  
	
  

(b)	
  Approxima.on	
  error	
  for	
  unquan.zed	
  
case.	
  	
  (Error	
  not	
  defined	
  in	
  transi.on	
  band.)	
  	
  

Figure	
  6.54	
  FIR	
  quan.za.on	
  example.	
  
(a)  Log	
  magnitude	
  for	
  unquan.zed	
  case.	
  

(c)	
  Approxima.on	
  error	
  for	
  16-­‐bit	
  quan.za.on.	
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Figure	
  	
  6.54	
  (con.nued)	
  
(d)	
  Approxima.on	
  error	
  for	
  14-­‐bit	
  quan.za.on.	
  

(e)	
  Approxima.on	
  error	
  for	
  13-­‐bit	
  quan.za.on.	
  

(f)	
  Approxima.on	
  error	
  for	
  8-­‐bit	
  quan.za.on.	
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Note	
  that	
  the	
  filter	
  design	
  specifica.ons	
  are	
  met	
  when	
  16	
  bit	
  or	
  14	
  bits	
  are	
  used,	
  and	
  are	
  	
  	
  	
  
almost	
  sa.sfied	
  for	
  the	
  case	
  of	
  13	
  bits.	
  	
  However,	
  for	
  the	
  8	
  bit	
  case,	
  the	
  approxima.on	
  error	
  
exceeds	
  the	
  specifica.on	
  by	
  a	
  factor	
  of	
  approximately	
  2	
  in	
  the	
  passband	
  and	
  by	
  a	
  factor	
  of	
  
approximately	
  20	
  in	
  the	
  stopband.	
  	
  	
  
	
  
To	
  relate	
  the	
  observa.ons	
  of	
  this	
  example	
  with	
  previous	
  statements	
  about	
  the	
  rela.onship	
  of	
  
sensi.vity	
  to	
  clustering	
  of	
  zeros,	
  the	
  zero	
  loca.ons	
  for	
  the	
  16-­‐bit	
  case,	
  13-­‐bit	
  case,	
  and	
  8-­‐bit	
  case	
  
are	
  shown	
  below,	
  along	
  with	
  the	
  zero	
  loca.ons	
  for	
  the	
  unquan.zed	
  case.	
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In	
  	
  the	
  above	
  figure,	
  note	
  the	
  increased	
  clustering	
  of	
  zeros	
  on	
  the	
  unit	
  circle	
  for	
  the	
  13	
  bit	
  case,	
  
and	
  especially	
  for	
  the	
  8-­‐bit	
  case.	
  
	
  
	
  

Figure	
  6.	
  55	
  	
  Effect	
  of	
  impulse	
  response	
  quan.za.on	
  on	
  zeros	
  of	
  H(z)	
  	
  	
  
(a)  Unquan.zed	
  	
  (b)	
  16-­‐bit	
  quan.za.on	
  	
  
(c)	
  13-­‐bit	
  quan.za.on	
  	
  

(d)	
  8-­‐bit	
  quan.za.on	
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Maintaining	
  Generalized	
  Linear	
  Phase	
  in	
  FIR	
  filters,	
  Even	
  with	
  Quan.za.on	
  of	
  Coefficients.	
  
	
  
If	
  an	
  FIR	
  filter	
  is	
  implemented	
  directly	
  (without	
  factoring),	
  then	
  generalized	
  linear	
  phase	
  is	
  
automa.cally	
  maintained	
  aYer	
  quan.za.on,	
  since	
  the	
  symmetry	
  condi.ons	
  that	
  guarantee	
  
generalized	
  linear	
  phase	
  are	
  not	
  affected	
  by	
  quan.za.on.	
  
	
  
Recall	
  that	
  the	
  symmetry	
  condi.ons	
  are	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  Types	
  I	
  and	
  II	
  filters	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
for	
  Types	
  III	
  and	
  IV	
  filters.	
  	
  Quan.za.on	
  affects	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  exactly	
  the	
  same,	
  therefore	
  
preserving	
  symmetric	
  condi.ons.	
  
	
  
If	
  it	
  is	
  desired	
  to	
  implement	
  an	
  FIR	
  filter	
  in	
  factored	
  form,	
  we	
  can	
  preserve	
  generalized	
  linear	
  
phase	
  even	
  though	
  quan.za.on	
  is	
  present,	
  by	
  recalling	
  that	
  zeros	
  of	
  a	
  generalized	
  phase	
  filters	
  
occur	
  in	
  special	
  pajerns,	
  each	
  of	
  which	
  is	
  considered	
  below:	
  
	
  	
  
Group	
  of	
  2	
  consis.ng	
  of	
  2	
  complex-­‐conjugate	
  zeros	
  on	
  unit	
  circle	
  
-­‐  The	
  corresponding	
  second-­‐order	
  factor	
  of	
  H(z)	
  has	
  the	
  form	
  	
  

Any	
  quan.za.on	
  error	
  in	
  represen.ng	
  the	
  value	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  changes	
  only	
  the	
  angle,	
  not	
  the	
  radius	
  
of	
  the	
  zeros.	
  	
  Thus,	
  they	
  will	
  s.ll	
  be	
  complex	
  conjugates	
  on	
  the	
  unit	
  circle.	
  
	
  
	
  
	
  

  h(n) = h(M − n)   h(n) = −h(M − n)
  h(n)   h(M − n)

 (1− z−1ejθ)(1− z−1e− jθ) = 1− z−12cos(θ) +1

  2cos(θ)
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Group	
  of	
  4	
  consis.ng	
  of	
  2	
  complex-­‐conjugate	
  zeros	
  not	
  on	
  unit	
  circle	
  and	
  their	
  reciprocals	
  	
  
-­‐  The	
  corresponding	
  fourth	
  order	
  factor	
  of	
  H(z)	
  has	
  the	
  form	
  

Since	
  both	
  pairs	
  of	
  zeros	
  have	
  the	
  same	
  coefficients,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  ,	
  any	
  quan.za.on	
  error	
  will	
  
affect	
  both	
  zero-­‐pairs	
  the	
  same	
  way,	
  and	
  the	
  conjugate-­‐reciprocal	
  property	
  of	
  the	
  4	
  zeros	
  will	
  be	
  
preserved.	
  
	
  
Group	
  of	
  two	
  real	
  zeros	
  not	
  on	
  unit	
  circle	
  
	
  
	
  
If	
  quan.za.on	
  error	
  is	
  present	
  in	
  the	
  representa.on	
  of	
  the	
  mul.plier	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  two	
  zeros	
  
involved	
  will	
  s.ll	
  be	
  real	
  reciprocals,	
  as	
  shown	
  below:	
  
First,	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  
The	
  zeros	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  
	
  
	
  
	
  

 
(1− z−1rejθ)(1− z−1re− jθ)(1− z−11

r ejθ)(1− z−11
r e− jθ)

 
= (1− z−12r cos(θ) + z−2r2)(1− z−12

r
cos(θ) + z−2

r2 )

 
= (1− z−12r cos(θ) + z−2r2) 1

r2 (r2 − z−12r cos(θ) + z−2)

 
(1− z−1a)(1− z−1 1

a) =1− z−1(a + 1
a) + z−2

  
(a + 1

a)

 
c = (a + 1

a)
 1− cz−1 + z−2

 
c + c2 −4

2   and  c − c2 −4
2

 2r cos(θ)  r2
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Now	
  show	
  that	
  the	
  reciprocal	
  of	
  the	
  first	
  term	
  above	
  is	
  in	
  fact	
  the	
  second	
  term:	
  
	
  
	
  
	
  
	
  
	
  
zeros	
  at	
  1	
  or	
  -­‐1	
  	
  
Factors	
  of	
  the	
  form	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  not	
  subject	
  to	
  quan.za.on	
  error.	
  
	
  
	
  

 

2
c + c2 − 4

= 2(c − c2 − 4)
(c + c2 − 4)(c − c2 − 4)

 
2(c − c2 − 4)
c2 − (c2 − 4) = c − c2 − 4

2

  (1− z−1)   (1+ z−1)
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