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Sec0on	
  6.9	
  -­‐	
  Effects	
  of	
  Round-­‐Off	
  	
  Noise	
  in	
  Digital	
  Filters	
  

	
  
We	
  have	
  already	
  seen	
  that	
  if	
  a	
  wide-­‐sense	
  sta2onary	
  random	
  signal	
  x(n)	
  is	
  applied	
  as	
  input	
  to	
  a	
  LTI	
  
system,	
  the	
  power	
  density	
  spectrum	
  of	
  the	
  output	
  y(n)	
  is	
  related	
  to	
  the	
  power	
  density	
  spectrum	
  of	
  
the	
  input	
  through	
  the	
  following	
  rela2on:	
  

	
  
Assume	
  that	
  the	
  input	
  e(n)	
  is	
  zero-­‐mean	
  white	
  noise	
  due	
  to	
  round-­‐off	
  and	
  the	
  average	
  power	
  of	
  
this	
  noise	
  is	
  	
  	
  	
  	
  	
  .	
  	
  	
  
Also	
  assume	
  that	
  the	
  frequency	
  response	
  of	
  that	
  por2on	
  of	
  the	
  system	
  between	
  the	
  entry	
  point	
  of	
  
the	
  noise	
  signal	
  e(n)	
  and	
  the	
  system	
  output	
  f(n)	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
The	
  power	
  density	
  spectrum	
  of	
  the	
  noise	
  in	
  the	
  output	
  is	
  therefore	
  
	
  	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa2on	
  6.103)	
  
	
  
Recall	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  Discrete	
  Time	
  Fourier	
  Transform	
  pair	
  with	
  the	
  autocorrela2on	
  func2on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  which	
  is	
  defined	
  (for	
  the	
  case	
  of	
  real	
  signals	
  which	
  are	
  wide-­‐sense	
  sta2onary)	
  as	
  
	
  
	
  

	
  

Φyy(e
jω) =| H(ejω) |2 Φxx(e

jω).

  Hef(e
jω)

 
P

ff
(ω) = Φ

ff
(ejω) = σ

e
2 | H

ef
(ejω) |2 .

Φff(ejω)
 φff(m)

φff(m) = E{(f(n)f(n +m))}.

 σe
2

1	
  



The	
  average	
  power	
  of	
  the	
  output	
  noise	
  due	
  to	
  round-­‐off	
  error	
  is	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  which	
  is	
  equal	
  to	
  	
  
Therefore,	
  
	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  
	
  	
  

	
   	
   	
   	
   	
  	
  
	
  	
  
Applying	
  Parseval's	
  rela2on,	
  we	
  can	
  also	
  express	
  the	
  above	
  as	
  
	
  
	
  
The	
  integral	
  in	
  equa2on	
  6.104	
  and	
  the	
  summa2on	
  in	
  equa2on	
  6.105	
  do	
  not	
  in	
  general	
  have	
  
simple	
  solu2ons	
  for	
  higher	
  order	
  systems.	
  	
  Therefore,	
  to	
  obtain	
  a	
  more	
  efficient	
  way	
  to	
  solve	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  we	
  turn	
  to	
  z-­‐transforms.	
  
	
  
In	
  order	
  to	
  establish	
  background	
  for	
  the	
  z-­‐transform	
  approach,	
  we	
  need	
  to	
  go	
  back	
  and	
  
generalize	
  the	
  development	
  we	
  did	
  before	
  in	
  Unit	
  5	
  which	
  led	
  to	
  the	
  expression	
  
	
  
	
  
The	
  first	
  step	
  is	
  to	
  generalize	
  the	
  previous	
  development	
  to	
  permit	
  complex-­‐valued	
  inputs	
  and	
  
complex	
  values	
  in	
  h(n)	
  and	
  x(n).	
  	
  As	
  before,	
  we	
  assume	
  an	
  y(n)	
  to	
  be	
  the	
  response	
  of	
  an	
  LTI	
  
system	
  to	
  a	
  wide-­‐sense	
  sta2onary	
  input.	
  	
  	
  
	
  	
  

σf
2 = E[f2(n)] φff(0).

σf
2 = φff(0) =

1
2π Φff(ejω)

−π

π

∫ dω

 
=

σe
2

2π
| Hef(e

jω ) |2
−π

π

∫ dω.

 
σ f

2 = φff(0) = σe
2 | hef(k) |2

k=−∞

∞

∑ . 	
  (equa2on	
  6.105)	
  

	
  (equa2on	
  6.104)	
  
	
  

  ϕ ff(0)

Φyy(e
jω) = Chh(e

jω)Φxx(e
jω) =| H(ejω) |2 Φxx(e

jω).
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The	
  autocorrela2on	
  of	
  the	
  output	
  process	
  {y(n)}	
  can	
  be	
  expressed	
  as	
  

	
  
	
  
	
  
	
  
Since{x(n)}	
  is	
  assumed	
  to	
  be	
  wide-­‐sense	
  sta2onary,	
  
	
  
	
  
Therefore,	
  the	
  right	
  hand	
  side	
  of	
  the	
  original	
  equa2on	
  is	
  independent	
  of	
  n,	
  and	
  the	
  leY-­‐hand	
  side	
  
must	
  also	
  be	
  independent	
  of	
  n,	
  that	
  is,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
We	
  can	
  therefore	
  write	
  
	
  
	
  
Now	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  sum	
  over	
  	
  	
  	
  instead	
  of	
  r:	
  	
  
	
  
	
  
	
  

  φyy(n,n + m) = E y*(n)y(n + m){ }

 
E h*(k)

r=−∞

∞

∑
k=−∞

∞

∑ x*(n − k)h(r)x(n + m − r)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= h*(k) h(r) E x*(n − k)x(n + m − r){ }
r=−∞

∞

∑
k=−∞

∞

∑ .

E x*(n − k)x(n +m − r){ } = φxx(m + k − r).

  φyy(n,n + m) = φyy(m)

 
φyy(m) = h*(k) h(r) φxx(m + k − r)

r=−∞

∞

∑
k=−∞

∞

∑ .

   = r − k  

  
φyy(m) = h*(k) h( + k) φxx(m − )

=−∞

∞

∑
k=−∞

∞

∑

  
= φxx(m − ) h*(k) h(+k)

k=−∞

∞

∑
=−∞

∞

∑ .
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Now	
  define	
  
	
  
	
  
which	
  can	
  be	
  also	
  be	
  wri[en	
  as	
  
	
  	
  
We	
  can	
  now	
  write	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  
which	
  can	
  also	
  be	
  represented	
  as	
  
	
  	
  
Therefore,	
  
	
  
(This	
  result	
  is	
  needed	
  in	
  developing	
  the	
  following	
  material	
  from	
  Appendix	
  5,	
  which	
  in	
  turn	
  is	
  
needed	
  as	
  background	
  for	
  Sec2on	
  6.9.)	
  
	
  
Appendix	
  A-­‐5:	
  	
  Use	
  of	
  the	
  z-­‐Transform	
  in	
  Average	
  Power	
  Computa2ons	
  
The	
  z-­‐transform	
  cannot	
  be	
  applied	
  to	
  an	
  	
  autocorrela2on	
  func2on	
  such	
  as	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  the	
  mean	
  of	
  
the	
  signal	
  y(n)	
  is	
  non-­‐zero.	
  To	
  see	
  that	
  this	
  is	
  true,	
  consider	
  a	
  signal	
  	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  is	
  the	
  mean	
  of	
  x(n)	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  a	
  zero-­‐mean	
  signal.	
  
	
  

  
chh() = h*(k) h(+k)

k=−∞

∞

∑

chh() = h*()∗h(−).

  φyy(m)

φyy(m) = φxx(m − )chh()
=−∞

∞

∑

φyy(m) = φxx(m)∗ chh(m).

φyy(m) = φxx(m)∗h*(m)∗h(−m).

  φyy(m)

x(n) = x1(n) +mx,

 mx   x1(n)
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The	
  z-­‐transform	
  of	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  component	
  is	
  
	
  	
  
	
  	
  
The	
  first	
  summa2on	
  converges	
  to	
  	
  	
  	
  
with	
  Region	
  of	
  Convergence	
  of	
  	
  	
  	
  
	
  
The	
  second	
  summa2on	
  converges	
  to	
  	
  
with	
  Region	
  of	
  Convergence	
  of	
  	
  	
  
Since	
  is	
  there	
  no	
  overlapping	
  Region	
  of	
  Convergence	
  for	
  the	
  two	
  summa2ons,	
  the	
  z-­‐transform	
  of	
  
the	
  constant	
  signal	
  	
  	
  	
  	
  	
  	
  	
  does	
  not	
  exit.	
  
	
  
In	
  general,	
  to	
  apply	
  the	
  z-­‐transform	
  to	
  analyze	
  random	
  signals,	
  it	
  is	
  therefore	
  necessary	
  to	
  use	
  
the	
  autocovariance	
  func2on	
  instead	
  of	
  the	
  autocorrela2on	
  func2on,	
  since	
  the	
  mean	
  is	
  removed	
  
in	
  the	
  defini2on	
  of	
  the	
  autocovariance	
  func2on:	
  
	
  
When	
  	
  	
  	
  	
  	
  =	
  0,	
  the	
  autocovariance	
  is	
  equal	
  to	
  the	
  autocorrela2on,	
  since	
  in	
  general	
  
	
  
	
  
Based	
  on	
  the	
  above	
  discussion,	
  consider	
  a	
  random	
  signal	
  x(n)	
  with	
  mean	
  	
  	
  	
  	
  	
  .	
  	
  Now	
  define	
  a	
  zero-­‐
mean	
  signal	
  as	
  
	
  
	
  

mx

Mx(z) = mxz
−n

n=−∞

−1

∑ + mxz
−n

n=0

∞

∑ .

 
mx

−z
z −1

⎛

⎝⎜
⎞

⎠⎟
| z |  < 1.

 
mx

z
z −1

⎛

⎝⎜
⎞

⎠⎟
| z |  > 1.

 mx

  γ xx(m) = E{[x(n) − mx] i [x(n + m) − mx]}.

 mx

γ xx(m) = ϕxx(m)− | mx |
2 .

 mx

x1(n) = x(n) −mx.
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The	
  autocorrela2on	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  

Subs2tu2ng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  into	
  the	
  above	
  expression	
  gives	
  
	
  	
  
	
  
=	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,the	
  autocovariance	
  of	
  x(n).	
  
	
  
If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  input	
  to	
  a	
  LTI	
  system,	
  we	
  know	
  from	
  previous	
  developments	
  in	
  this	
  Unit	
  that	
  the	
  
autocorrela2on	
  of	
  the	
  output	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
	
  
	
  
We	
  have	
  also	
  just	
  shown	
  that	
  	
  
	
  
Therefore,	
  	
  
	
  
By	
  defini2on,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  also	
  be	
  expressed	
  as	
  
	
  

φx
1
x
1
(m) = E{x1

*(n)x1(n +m)}.
  x1(n)

  x1(n) = x(n) − mx

 
φx1x1

(m) = E{ x(n) − mx( )* x(n + m) − mx( )}
 γ xx(m)

  x1(n)

  y1(n)

φy
1
y
1
(m) = φx

1
x
1
(m)∗h*(m)∗h(−m).

φx
1
x
1
(m) = γ xx(m).

φy
1
y
1
(m) = γ xx(m)∗h*(m)∗h(−m).

 φy1y1
(m)

φy
1
y
1
(m) = E{y1

*(n)y1(n +m)}.

6	
  



Recall	
  that	
  	
  
	
  
	
  	
  
	
  	
  
	
  
We	
  can	
  therefore	
  rewrite	
  the	
  previous	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  
Note	
  that	
  if	
  the	
  input	
  to	
  an	
  LTI	
  system	
  is	
  the	
  random	
  signal	
  x(n),	
  the	
  expected	
  value	
  of	
  the	
  output	
  
is	
  
	
  
	
  
Therefore,	
  the	
  previous	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  now	
  expressed	
  as	
  
	
  
	
  
which,	
  by	
  defini2on,	
  is	
  equal	
  to	
  the	
  autocovariance	
  of	
  y(n).	
  	
  That	
  is,	
  
	
  
Using	
  this	
  result	
  in	
  the	
  previous	
  expression	
  of	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  

 y1(n) = x1(n) ∗ h(n)

 = [x(n) − mx]∗ h(n)

= y(n) −mx h(k)
k=−∞

∞

∑ .

 φy1y1
(m)

φy
1
y
1
(m) = E{[y*(n) −mx

* h*(k)
k=−∞

∞

∑ ][y(n +m) −mx h(k)
k=−∞

∞

∑ ]}.

E[y(n)] = my = E{ h(k)x(n − k)} =
k=−∞

∞

∑  mx h(k)
k=−∞

∞

∑ .

 φy1y1
(m)

φy
1
y
1
(m) = E{[y*(n) −my

* ][y(n +m) −my}.

φy1y1
(m) = γ yy(m).

  
φy1y1

(m) = γ xx(m)∗h*(m)∗h(−m)

gives	
  the	
  important	
  result:	
  

  γ yy(m) = γ xx(m)∗h*(m)∗h(−m)

  = γ xx(m)∗ chh(m).
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We	
  are	
  now	
  prepared	
  to	
  use	
  a	
  z-­‐transform	
  approach	
  for	
  finding	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
We	
  begin	
  by	
  expressing	
  the	
  z-­‐transform	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
	
  
	
  
Now	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  sum	
  over	
  m	
  instead	
  of	
  	
  	
  	
  :	
  
	
  
	
  
	
  
	
  
	
  
	
  
Then,	
  since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (as	
  already	
  shown)	
  
	
  

  γ yy(0)

  chh()

  
Ζ{chh()} = chh()z−

=−∞

∞

∑

= h*(k) h(+k)
k=−∞

∞

∑ z−

=−∞

∞

∑ .

  m =  + k  

 
h*(k) h(m)

k=−∞

∞

∑ z−(m−k)

m=−∞

∞

∑

 
= h(m)z−m h*(k) 

k=−∞

∞

∑ zk

m=−∞

∞

∑  =  H(z) h(k) (
k=−∞

∞

∑ z*)k⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

*

= H(z) h(k) (
k=−∞

∞

∑ 1
z *

)−k⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

*

= H(z)H* 1
z *

⎛

⎝⎜
⎞

⎠⎟
= Chh(z).

  γ yy(m) = γ xx(m)∗ chh(m)

 Γ yy(z) = Γxx(z)Chh(z)

= Γxx(z)H(z)H
* 1

z *
⎛

⎝⎜
⎞

⎠⎟
. (equa2on	
  A.58)	
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What	
  are	
  ul2mately	
  trying	
  to	
  find	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  the	
  case	
  where	
  the	
  input	
  is	
  zero-­‐mean	
  
white	
  noise	
  with	
  	
  

The	
  corresponding	
  z-­‐transform	
  is	
  	
  
	
  
and	
  therefore	
  
	
  
	
  
The	
  value	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  found	
  by	
  evalua2ng	
  the	
  inverse	
  z-­‐transform	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  the	
  case	
  of	
  	
  
m=0.	
  
	
  
Consider	
  the	
  case	
  of	
  a	
  stable	
  and	
  causal	
  system	
  whose	
  H(z)	
  has	
  the	
  form:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  M	
  <	
  N.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
The	
  Region	
  of	
  Convergence	
  is	
  	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

 γ yy(0) = E[y2(n)]

γ xx(m) = φxx(m) = σx
2δ(m).

 Γxx(z) = σx
2

Γ yy(z) = σx
2H(z)H* 1

z *
⎛

⎝⎜
⎞

⎠⎟
.

  γ yy(0)  Γ yy(z)

 

H(z) = A
(1− cmz−1)

m=1

M

∏

(1− dkz
−1)

k=1

N

∏

 
| z |  >  max

k
{|dk|}

max
k

{|dk|} < 1.

(equa2on	
  A.62)	
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If	
  the	
  input	
  is	
  zero	
  mean	
  white	
  noise	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  becomes	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa2on.	
  A.63)	
  
	
  
This	
  can	
  be	
  expressed	
  in	
  par2al	
  frac2on	
  form	
  as	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa2on	
  A.64)	
  
	
  
where	
  the	
  	
  	
  	
  	
  	
  can	
  be	
  found	
  from	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  pole	
  at	
  each	
  	
  	
  	
  	
  	
  	
  is	
  inside	
  the	
  unit	
  circle,	
  and	
  the	
  pole	
  at	
  each	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
outside	
  the	
  unit	
  circle.	
  	
  The	
  region	
  of	
  convergence	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  therefore	
  
	
  
	
  
The	
  inverse	
  z-­‐transform	
  will	
  therefore	
  be	
  two-­‐sided	
  and	
  have	
  the	
  form:	
  
	
  
	
  
We	
  are	
  interested	
  in	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  which	
  can	
  be	
  found	
  as	
  
	
  

	
   	
  	
  

 Γxx(z) = σx
2

 Γ yy(z)

Γyy(z) = σx
2H(z)H* 1

z *
⎛

⎝⎜
⎞

⎠⎟
= σx

2 | A |2
(1− cmz

−1)(1− cm
* z)

m=1

M

∏

(1− dkz
−1)(1− dk

*z)
k=1

N

∏
.

 
Γ yy(z) = σx

2 Ak
1− dkz

−1
k=1

N

∑ −
Ak

*

1− (dk
* )−1z−1

⎛

⎝
⎜

⎞

⎠
⎟

 Ak

Ak = H(z)H* 1
z *

⎛

⎝⎜
⎞

⎠⎟
(1− dkz

−1)
z=d

k

. (equa2on	
  A.65)	
  
	
  

 
max

k
{|dk|} < 1  dk  (dk

* )−1

 Γ yy(z)

max
k

{|dk|}< |z| <min
k

{|(dk
*)−1|}.

γ yy(n) = σx
2 Ak(dk)

n

k=1

N

∑ u(n) + Ak
*(dk

*)−n
k=1

N

∑ u(−n −1)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 γ yy(0)

γ yy(0) = σx
2 Ak

k=1

N

∑
⎛

⎝⎜
⎞

⎠⎟
= σy

2.
(see	
  equa2on	
  A.66)	
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Example	
  A.2	
  	
  Noise	
  Power	
  Output	
  of	
  a	
  2nd	
  Order	
  IIR	
  Filter	
  
Consider	
  a	
  system	
  having	
  unit	
  sample	
  response	
  
	
  
	
  
Using	
  the	
  fact,	
  from	
  z-­‐transform	
  tables,	
  that	
  	
  
	
  
	
  
and	
  using	
  the	
  z-­‐transform	
  property	
  that	
  
	
  
	
  
the	
  z-­‐transform	
  of	
  the	
  above	
  h(n)	
  can	
  be	
  found	
  to	
  be	
  
	
  
	
  
To	
  link	
  this	
  with	
  previous	
  nota2on,	
  one	
  pole	
  is	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  the	
  other	
  pole	
  is	
  at	
  
If	
  the	
  input	
  to	
  this	
  system	
  is	
  white	
  noise	
  with	
  total	
  power	
  =	
  	
  
the	
  z-­‐transform	
  of	
  the	
  autocovariance	
  of	
  the	
  system	
  output	
  y(n)	
  is	
  
	
  
	
  

h(n) =
rn sin θ(n +1)⎡⎣ ⎤⎦

sinθ u(n).

Z{sin(θn)u(n)} =  zsinθ
z2 − 2zcosθ +1

.

Z{anx(n)} = X(z)
z=(z/a)

,

H(z) = 1
(1− rejθz−1)(1− re− jθz−1)

.

 d1 = rejθ d2 = re− jθ.
σx

2,

 
Γ yy(z) = σx

2H(z)H* 1
z *

⎛

⎝⎜
⎞

⎠⎟

= σx
2 1

(1− rejθz−1)(1− re− jθz−1)
⎛

⎝⎜
⎞

⎠⎟
1

(1− re− jθz)(1− rejθz)
⎛

⎝⎜
⎞

⎠⎟
. (equa2on	
  A.69)	
  	
  

(equa2on	
  A.68)	
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The	
  par2al	
  frac2on	
  representa2on	
  of	
  the	
  above	
  is	
  
	
  
	
  
	
  
	
  
where	
  	
  
	
  
	
  
and	
  	
  	
  
	
  
	
  
AYer	
  making	
  the	
  indicated	
  subs2tu2ons	
  and	
  simplifying,	
  the	
  sum	
  of	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  is	
  
	
  
	
  
Therefore,	
  

	
   	
  	
  
	
  

 

σx
2 A1

(1− rejθz−1)
−

A1
*

(1− 1
r ejθz−1)

+
A2

(1− re− jθz−1)
−

A2
*

(1− 1
r e− jθz−1)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 
A1 =

1
(1− re− jθz−1)

⎛

⎝⎜
⎞

⎠⎟
1

(1− re− jθz)(1− rejθz)
⎛

⎝⎜
⎞

⎠⎟ z=rejθ

A2 = 1
(1− rejθz−1)

⎛

⎝⎜
⎞

⎠⎟
1

(1− re− jθz)(1− rejθz)
⎛

⎝⎜
⎞

⎠⎟ z=re− jθ
.

 A1  A2

1+ r2

1− r2
⎛

⎝
⎜

⎞

⎠
⎟

1
1− 2r2 cos(2θ) + r4

.

γ yy(0) = E{y2(n)} = σx
2 1+ r2

1− r2
⎛

⎝
⎜

⎞

⎠
⎟

1
1− 2r2 cos(2θ) + r4

.
(equa2on	
  A.71)	
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Note	
  that	
  the	
  above	
  expression	
  is	
  much	
  more	
  easily	
  evaluated	
  that	
  the	
  alterna2ve	
  methods	
  for	
  
finding	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  which	
  are	
  
	
  
	
  
and	
  

	
  

  E{y2(n)}

 
E{y2(n)} = σx

2 | h(n) |2
k=−∞

∞

∑ = σx
2 rn sinθ(n +1)

sinθn=0

∞

∑
2

E{y2(n)} = 1
2π

σx
2 ||

−π

π

∫ H(ejω) |2 dω =
σx

2

2π
dω

| (1− rejθe− jω)(1− re− jθe− jω) |2−π

π

∫ .
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