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Effects	
  of	
  Round-­‐Off	
  Noise	
  in	
  Digital	
  Filters-­‐Con9nued	
  
Consider	
  the	
  linear	
  difference	
  equa9on	
  associated	
  with	
  a	
  Direct	
  Form	
  I	
  implementa9on	
  of	
  an	
  IIR	
  
digital	
  filter:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
A	
  signal	
  flow	
  diagram	
  for	
  the	
  implementa9on	
  of	
  this	
  system	
  is	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Round-­‐off	
  error	
  can	
  occur	
  each	
  9me	
  a	
  mul9plica9on	
  is	
  implemented	
  in	
  the	
  above	
  diagram.	
  	
  The	
  
diagram	
  can	
  be	
  modified	
  to	
  include	
  the	
  effect	
  of	
  round-­‐off	
  error	
  as	
  follows:	
  
	
  
	
  
	
  	
  
	
  

 
y(n) = bkx(n − k) +

k=0

M

∑ aky(n − k)
k=1

N

∑ (equa9on	
  6.90)	
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Based	
  on	
  the	
  above	
  figure,	
  we	
  could	
  rewrite	
  the	
  difference	
  equa9on	
  for	
  the	
  system	
  as	
  	
  
	
  
	
  
Note	
  that	
  the	
  system	
  as	
  shown	
  in	
  the	
  above	
  figure	
  is	
  non-­‐linear,	
  due	
  to	
  the	
  proper9es	
  of	
  the	
  
quan9zer.	
  
	
  
Another	
  way	
  to	
  represent	
  the	
  effects	
  of	
  quan9za9on	
  due	
  to	
  round-­‐off	
  errors	
  is	
  to	
  represent	
  
round-­‐off	
  error	
  as	
  independent	
  noise	
  sources	
  which	
  inject	
  noise	
  into	
  the	
  system	
  at	
  each	
  point	
  
where	
  round-­‐off	
  error	
  occurs.	
  	
  Each	
  noise	
  source	
  can	
  be	
  formally	
  defined	
  as	
  
	
  
This	
  approach	
  leads	
  to	
  the	
  figure	
  shown	
  below:	
  
	
  

ŷ(n) = Q[bkx(n − k)] +
k=0

M

∑ Q[akŷ(n − k)
k=1

N

∑ ].

e(n) = Q[bx(n)]− bx(n).

Figure	
  6.57	
  Models	
  for	
  direct	
  form	
  I	
  
system.	
  	
  (a)	
  Infinite-­‐precision	
  model	
  
(b)	
  Nonlinear	
  quan9zed	
  model	
  
(c)	
  Linear-­‐noise	
  model.	
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In	
  order	
  to	
  obtain	
  a	
  mathema9cally	
  tractable	
  way	
  to	
  analyze	
  noise,	
  due	
  to	
  round-­‐off	
  errors,	
  	
  	
  	
  	
  	
  
we	
  make	
  the	
  following	
  assump9ons:	
  
1.   Each	
  noise	
  source	
  e(n)	
  is	
  a	
  wide-­‐sense-­‐sta:onary	
  white-­‐noise	
  process.	
  
2.   Each	
  noise	
  source	
  has	
  a	
  uniform	
  density	
  func:on.	
  
3.   Each	
  noise	
  source	
  is	
  uncorrelated	
  with	
  the	
  quan:zer	
  input,	
  with	
  all	
  other	
  quan:za:on	
  

noise	
  sources,	
  and	
  with	
  the	
  input	
  to	
  the	
  system.	
  
	
  
Research	
  has	
  shown	
  that	
  these	
  assump9ons	
  are	
  valid	
  if	
  the	
  signal	
  is	
  a	
  "complicated"	
  wideband	
  
signal	
  such	
  as	
  speech,	
  in	
  which	
  the	
  signal	
  fluctuates	
  rapidly	
  over	
  all	
  quan9za9on	
  levels	
  and	
  
typically	
  traverses	
  over	
  many	
  quan9za9on	
  levels	
  in	
  going	
  from	
  sample	
  to	
  sample.	
  
	
  
As	
  seen	
  before,	
  if	
  B	
  +1	
  bits	
  are	
  available	
  to	
  represent	
  signals	
  that	
  range	
  from	
  -­‐1	
  to	
  1,	
  the	
  size	
  
range	
  for	
  round-­‐off	
  error	
  for	
  two's	
  complement	
  representa9on	
  is	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  
	
  
If	
  the	
  probability	
  density	
  func9on	
  for	
  e(n)	
  is	
  uniform	
  over	
  this	
  range,	
  as	
  shown	
  in	
  the	
  figure	
  
below,	
  
	
  
	
  

  
− Δ

2 < e(n) < Δ
2 Δ = 2−B.
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The	
  variance	
  of	
  the	
  round-­‐off	
  error	
  (noise	
  power)	
  can	
  be	
  found	
  as	
  follows:	
  
	
  
	
  
	
  
	
  	
  
	
  	
  
Expressed	
  in	
  term	
  of	
  B,	
  this	
  becomes	
  
	
  	
  
	
  	
  
If	
  the	
  round-­‐off	
  error	
  is	
  uncorrelated	
  and	
  has	
  zero	
  mean	
  as	
  assumed,	
  its	
  autocorrela9on	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  
and	
  its	
  power	
  spectrum	
  is	
  
	
  	
  
	
  
Since	
  the	
  various	
  round-­‐off	
  source	
  sources	
  are	
  assumed	
  independent	
  of	
  each	
  other,	
  all	
  the	
  noise	
  
sources	
  that	
  inject	
  noise	
  at	
  the	
  same	
  summa9on	
  node	
  can	
  be	
  combined	
  into	
  a	
  single	
  noise	
  
source	
  whose	
  variance	
  (total	
  noise	
  power)	
  is	
  equal	
  to	
  the	
  sum	
  of	
  the	
  variances	
  of	
  the	
  
contribu9ng	
  noise	
  sources.	
  	
  	
  
For	
  example,	
  	
  all	
  five	
  noise	
  sources	
  in	
  Figure	
  6.57(c)	
  can	
  be	
  combined	
  into	
  a	
  single	
  source	
  e(n)	
  
where	
  
	
  

 

E{e2(n)} = σe
2 = 1

Δ
−Δ2

Δ
2

∫  e2de

= 1
Δ
e3

3
− Δ2

Δ
2

= 1
3Δ

Δ3

8 − (−Δ)3
8

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= Δ2

12.

σe
2 =

2−B( )2
12 = 2−2B

12 .

 φee(n) = σe
2δ(n)

Φee(ejω) = σe
2.

  e(n) = e1(n)+ e2(n)+ e3(n)+ e4(n)+ e5(n)
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The	
  corresponding	
  signal	
  flow	
  diagram	
  can	
  now	
  be	
  represented	
  as	
  

	
  
	
  
	
  
	
  
	
  
The	
  total	
  noise	
  power	
  of	
  the	
  combined	
  round-­‐off	
  noise	
  sources	
  is,	
  since	
  they	
  are	
  assumed	
  to	
  be	
  
independent,	
  is	
  
	
  
	
  
	
  
In	
  general,	
  for	
  a	
  Direct	
  Form	
  I	
  implementa9on	
  for	
  a	
  filter	
  having	
  M	
  zeros	
  and	
  N	
  poles,	
  this	
  
expression	
  for	
  the	
  total	
  noise	
  power	
  of	
  the	
  combined	
  round-­‐off	
  noise	
  sources	
  is	
  
	
  

 σe
2 = σe0

2 + σe1
2 + σe2

2 + σe3
2 + σe4

= 52−2B

12 .

σe
2 = (M +1+ N)2

−2B

12 .

Figure	
  6.59	
  	
  Linear-­‐noise	
  model	
  for	
  direct	
  form	
  I	
  with	
  noise	
  sources	
  combined.	
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For	
  Direct	
  Form	
  I,	
  all	
  the	
  round-­‐off	
  noise	
  is	
  injected	
  a`er	
  the	
  signal	
  passes	
  through	
  the	
  zeros	
  	
  	
  	
  
and	
  before	
  it	
  passes	
  through	
  the	
  poles.	
  	
  In	
  other	
  words,	
  the	
  round-­‐off	
  noise	
  passes	
  only	
  though	
  
the	
  poles	
  of	
  the	
  filter.	
  	
  Therefore,	
  the	
  transfer	
  func9on	
  between	
  the	
  point	
  of	
  noise	
  injec9on	
  and	
  
the	
  filter	
  output	
  is	
  
	
  
	
  
where	
  A(z)	
  is	
  the	
  denominator	
  of	
  the	
  overall	
  system	
  func9on	
  H(z).	
  
	
  
The	
  total	
  output	
  noise	
  power	
  due	
  to	
  internal	
  round-­‐off	
  error	
  is	
  therefore	
  
	
  
	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  unit	
  sample	
  response	
  corresponding	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
Example	
  6.11	
  -­‐	
  	
  Round-­‐off	
  Noise	
  in	
  a	
  1st	
  Order	
  System	
  
	
  
Consider	
  an	
  LTI	
  system	
  having	
  system	
  func9on	
  
	
  
	
  	
  

	
   	
   	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

 
Hef(z) = 1

A(z)

σf
2 = (M +1+ N)2

−2B

12
1
2π

dω
| A(ejω) |2−π

π

∫

 
= (M +1+ N)2−2B

12 | hef(n) |2
n=−∞

∞

∑

(equa9on	
  6.106)	
  

  hef(n) Hef(z) =
1

A(z)
.

 
H(z) = b

1− az−1 ,    a <1 (equa9on	
  6.107)	
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A	
  Direct	
  Form	
  I	
  implementa9on	
  of	
  this	
  system	
  is	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
In	
  the	
  Direct	
  Form	
  I	
  implementa9on,	
  the	
  transfer	
  func9on	
  that	
  both	
  sources	
  of	
  round-­‐off	
  noise	
  
will	
  pass	
  through	
  is	
  
	
  	
  
with	
  corresponding	
  frequency	
  response	
  of	
  
	
  	
  
	
  	
  
The	
  	
  power	
  spectrum	
  of	
  noise	
  at	
  the	
  output	
  is	
  
	
  	
  
	
  
	
  
	
  
(The	
  leading	
  factor	
  of	
  2	
  is	
  because	
  there	
  are	
  two	
  sources	
  of	
  round-­‐off	
  noise	
  in	
  the	
  figure.)	
  
	
  

 
Hef(z) = 1

1− az−1

Hef(e
jω)= 1

1− ae-jω .

 Φff(e
jω ) = Pff(ω) = σe

2|Hef(e
jω )|2

= 22−2B

12
1

1+ a2 − 2acos(ω)
⎛

⎝⎜
⎞

⎠⎟
.

Figure	
  6.60	
  1st	
  order	
  linear	
  noise	
  model.	
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The	
  unit	
  sample	
  response	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
	
  
For	
  this	
  simple	
  form	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  we	
  can	
  find	
  the	
  total	
  power	
  in	
  the	
  output	
  noise	
  using	
  
	
  
	
  
	
  
	
  
Note	
  that	
  the	
  output	
  noise	
  power	
  increases	
  drama9cally	
  as	
  the	
  loca9on	
  of	
  the	
  pole	
  at	
  z	
  =	
  a	
  
approaches	
  the	
  unit	
  circle.	
  
	
  
Example	
  6.12	
  	
  Round-­‐Off	
  Noise	
  in	
  2nd	
  Order	
  System	
  
Consider	
  the	
  following	
  second	
  order	
  system:	
  
	
  
	
  
The	
  Direct	
  Form	
  I	
  implementa9on	
  of	
  this	
  system	
  is	
  shown	
  below:	
  
	
  	
  
	
  

 Hef(z)
hef(n) = anu(n).

 hef(n)

 
σf

2 = σe
2 | h(n) |2

n=0

∞

∑

= σe
2 | a |2n
n=0

∞

∑ = 22−2B

12
1

1− | a |2
⎛

⎝⎜
⎞

⎠⎟
.

H(z)= b0 + b1z
−1 + b2z

−2

(1− rejθz−1)(1− re− jθz−1)
.
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Note	
  that	
  there	
  are	
  five	
  sources	
  of	
  round-­‐off	
  noise	
  in	
  this	
  implementa9on.	
  	
  The	
  total	
  noise	
  	
  
power	
  in	
  the	
  output	
  can	
  be	
  expressed	
  as	
  

	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa9on	
  6.111)	
  
	
  
As	
  shown	
  previous,	
  	
  we	
  can	
  use	
  a	
  z-­‐transform	
  approach	
  to	
  evalua9ng	
  	
  	
  	
  	
  .	
  	
  (This	
  was	
  based	
  on	
  
material	
  in	
  Appendix	
  A.5).	
  	
  Using	
  the	
  z-­‐transform	
  approach,	
  we	
  have	
  shown	
  that	
  if	
  a	
  white	
  noise	
  
source	
  with	
  variance	
  	
  	
  	
  	
  passed	
  through	
  a	
  second	
  order	
  system	
  with	
  poles	
  at	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  no	
  
zeros,	
  the	
  resul9ng	
  output	
  noise	
  power	
  is	
  	
  
	
  	
  
	
  
Applying	
  this	
  result	
  to	
  the	
  current	
  example	
  where	
  there	
  are	
  5	
  noise	
  sources,	
  each	
  with	
  average	
  
power	
  of	
  
	
  	
  
	
  
we	
  obtain	
  
	
  
	
  

 
σf

2 = 5σe
2 Hef(e

jω )
2
dω   

−π

π

∫

 

= 52−2B

12
dω

(1− rejθe− jω )(1− re− jθe− jω )2          
−π

π

∫

 σ f
2

 σe
2  rejθ  re− jθ

σf
2 = γ ff(0) = σe

2 1+ r2

1− r2
⎛

⎝
⎜

⎞

⎠
⎟

1
r4 +1− 2r2 cos2θ

.

σe
2 = 2−2B

12 ,

σf
2 = 52−2B

12
1+ r2

1− r2
⎛

⎝
⎜

⎞

⎠
⎟

1
r4 +1− 2r2 cos2θ

.
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Round-­‐Off	
  Noise	
  in	
  Direct	
  Form	
  II	
  
Sources	
  of	
  round-­‐off	
  error	
  in	
  a	
  Direct	
  Form	
  II	
  implementa9on	
  of	
  a	
  second	
  order	
  system	
  are	
  
shown	
  in	
  the	
  figure	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  corresponding	
  difference	
  equa9ons,	
  also	
  represen9ng	
  the	
  round-­‐off	
  error,	
  as	
  are	
  follows:	
  
	
  
	
  
and	
  
	
  
	
  
	
  
The	
  N	
  round-­‐off	
  errors	
  involved	
  in	
  genera9ng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  the	
  first	
  equa9on	
  can	
  be	
  modeled	
  as	
  a	
  
combined	
  noise	
  source	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  that	
  enters	
  the	
  system	
  at	
  the	
  system	
  input.	
  	
  	
  
The	
  M	
  +	
  1	
  round-­‐off	
  errors	
  involved	
  in	
  genera9ng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  modeled	
  as	
  a	
  combined	
  noise	
  
source	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  that	
  enters	
  the	
  system	
  at	
  the	
  system	
  output,	
  as	
  shown	
  in	
  the	
  figure	
  below:	
  
	
  

 
ŵ n⎡⎣ ⎤⎦ = Q akŵ n − k⎡⎣ ⎤⎦

⎡
⎣

⎤
⎦k=1

N

∑ + x n⎡⎣ ⎤⎦

ŷ n⎡⎣ ⎤⎦ = Q bkŵ n − k⎡⎣ ⎤⎦
⎡
⎣

⎤
⎦

k=1

M
∑ .

  ̂w n⎡⎣ ⎤⎦

 ea(n)

 ̂y n⎡⎣ ⎤⎦

 eb(n)
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The	
  power	
  spectrum	
  of	
  	
  noise	
  in	
  the	
  system	
  output	
  due	
  to	
  round-­‐off	
  error	
  can	
  therefore	
  be	
  
represented	
  as	
  
	
  
	
  
The	
  total	
  average	
  noise	
  power	
  in	
  the	
  output	
  can	
  be	
  expressed	
  as	
  
	
  
	
  
or	
  as	
  	
  
	
  
	
  
A	
  third	
  op9on	
  	
  is	
  to	
  use	
  the	
  z-­‐transform	
  based	
  approach	
  to	
  find	
  	
  	
  	
  	
  	
  as	
  
	
  

 
Φff(e

jω ) = Pff(ω) = N2−2B

12
| H(ejω ) |2 + (M +1)2−2B

12
.

σf
2 = N2−2B

12
1

2π
H(ejω)

2
dω +  (M +1)2−2B

12−π

π

∫

 
σf

2 = N2−2B

12 h n⎡⎣ ⎤⎦
n=−∞

∞

∑
2

+  (M +1)2−2B

12 .

 σf
2

 
σf

2 = N2−2B

12 γ ff(0) +  (M +1)2−2B

12 .

Figure	
  6.61	
  	
  Linear-­‐noise	
  models	
  for	
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Comparison	
  of	
  Direct	
  Form	
  I	
  and	
  Direct	
  Form	
  II	
  
The	
  ques9on	
  of	
  which	
  Form	
  has	
  the	
  least	
  average	
  noise	
  power	
  in	
  the	
  output	
  due	
  to	
  round-­‐off	
  
error	
  depends	
  on	
  the	
  loca9on	
  of	
  the	
  poles	
  and	
  zeros.	
  
	
  
Reduc9on	
  in	
  Quan9za9on	
  Noise	
  
If	
  a	
  double-­‐length	
  adder	
  (having	
  2B+1	
  or	
  2B+2	
  bits)	
  is	
  used	
  to	
  accumulate	
  sums	
  of	
  products,	
  and	
  
if	
  double	
  length	
  registers	
  are	
  used	
  to	
  stored	
  the	
  output	
  of	
  delays	
  (z-­‐1	
  units),	
  then	
  the	
  effect	
  of	
  
round-­‐off	
  can	
  be	
  represented	
  for	
  Direct	
  Form	
  I	
  as	
  
	
  
	
  
	
  
The	
  overall	
  effect	
  is	
  to	
  replace	
  M+1+N	
  sources	
  of	
  round-­‐off	
  noise	
  with	
  a	
  single	
  source.	
  	
  This	
  
reduces	
  the	
  average	
  power	
  of	
  noise	
  in	
  the	
  output	
  by	
  as	
  factor	
  of	
  1/	
  (M+1+N).	
  
	
  
Using	
  a	
  double-­‐length	
  adder/accumulator	
  in	
  a	
  Direct	
  Form	
  II	
  implementa9on	
  changes	
  the	
  
equa9ons	
  to	
  
	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa9on	
  6.117a)	
  
and	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa9on	
  6.117b)	
  
	
  
	
  
	
  

ŷ n⎡⎣ ⎤⎦ = Q akŷ n − k⎡⎣ ⎤⎦ + bkx n − k⎡⎣ ⎤⎦
k=0

M

∑
k=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 
ŵ n⎡⎣ ⎤⎦ = Q akŵ n − k⎡⎣ ⎤⎦ + x n⎡⎣ ⎤⎦

k=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
ŷ n⎡⎣ ⎤⎦ = Q bkŵ n − k⎡⎣ ⎤⎦

k=0

M
∑

⎡

⎣
⎢

⎤

⎦
⎥ .
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Scaling	
  in	
  Fixed-­‐Point	
  Implementa:ons	
  of	
  IIR	
  Systems	
  
To	
  prevent	
  overflow	
  in	
  fixed	
  point	
  implementa9ons,	
  it	
  is	
  o`en	
  necessary	
  to	
  scale	
  the	
  signal	
  as	
  it	
  
passes	
  through	
  the	
  system.	
  
	
  
Normally,	
  scaling	
  is	
  based	
  on	
  requiring	
  the	
  signal	
  at	
  each	
  cri:cal	
  node	
  in	
  the	
  implementa:on	
  to	
  
have	
  magnitude	
  less	
  than	
  one.	
  	
  In	
  this	
  way,	
  the	
  two's	
  complement	
  format	
  is	
  assumed	
  to	
  
represent	
  a	
  proper	
  frac9on.	
  	
  	
  
	
  
Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  represent	
  the	
  value	
  of	
  the	
  signal	
  at	
  node	
  k	
  within	
  the	
  implementa9on	
  structure	
  and	
  let	
  
denote	
  the	
  unit	
  sample	
  response	
  of	
  that	
  part	
  of	
  the	
  system	
  between	
  the	
  input	
  and	
  the	
  node	
  k.	
  
Then	
  	
  
	
  
	
  
If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  all	
  n,	
  then	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  bounded	
  by	
  
	
  	
  
	
  
Therefore,	
  a	
  sufficient	
  condi9on	
  for	
  preven9ng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  from	
  exceeding	
  a	
  value	
  of	
  1	
  is	
  
	
  
	
  

 wk(n)  hk(m)

|wk(n)|= x(n −m)hk(m)
m=∞

∞

∑ .

 | x(n) |  ≤ xmax  wk(n)

|wk(n)| ≤ xmax | hk(m)
m=∞

∞

∑ | .

 |wk(n)|

xmax  ≤   1

| hk(m)
m=∞

∞

∑ |
 .
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If	
  	
  	
  	
  	
  	
  	
  	
  does	
  not	
  sa9sfy	
  the	
  above	
  inequality,	
  we	
  can	
  mul9ply	
  the	
  input	
  x(n)	
  by	
  a	
  scale	
  factor	
  to	
  
ensure	
  that	
  the	
  signal	
  at	
  all	
  nodes	
  and	
  at	
  the	
  output	
  sa9sfies	
  this	
  requirement.	
  	
  That	
  is,	
  we	
  
choose	
  the	
  scale	
  factor	
  s	
  so	
  that	
  
	
  
	
  
	
  
The	
  above	
  approach	
  is	
  o`en	
  overly	
  conserva9ve.	
  	
  (And	
  mul9plying	
  by	
  a	
  scale	
  factor	
  that	
  is	
  
smaller	
  than	
  necessary	
  reduces	
  the	
  ra9o	
  of	
  signal-­‐to-­‐roundoff	
  noise.)	
  
	
  
A	
  less	
  conserva9ve	
  approach	
  to	
  scaling	
  is	
  based	
  on	
  assuming	
  that	
  the	
  input	
  is	
  a	
  narrowband	
  
signal	
  that	
  can	
  be	
  approximated	
  as	
  
	
  	
  
The	
  signal	
  at	
  the	
  various	
  nodes	
  in	
  the	
  implementa9on	
  can	
  then	
  be	
  represented	
  as	
  
	
  
Overflow	
  is	
  avoided	
  for	
  all	
  sinusoidal	
  frequencies	
  if	
  
	
  
	
  
If	
  this	
  condi9on	
  is	
  not	
  naturally	
  sa9sfied,	
  we	
  can	
  force	
  it	
  to	
  be	
  sa9sfied	
  by	
  mul9plying	
  the	
  input	
  
by	
  a	
  scale	
  factor	
  s	
  so	
  that	
  
	
  
	
  

 xmax

sxmax  ≤   1

max
k

| hk(m)
m=∞

∞

∑ |
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 .

x(n)= xmax cosω0n.

wk(n) = |Hk(e
jω

0 )| xmax cos(ω0n + Hk(e
jω

0 )).

max
k,|ω|<π

|Hk(e
jω)|xmax <1.

sxmax  ≤   1
max
k,|ω|<π

|Hk(e
jω)|

.
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A	
  third	
  possible	
  scaling	
  approach	
  is	
  based	
  on	
  the	
  total	
  energy	
  of	
  the	
  input	
  instead	
  of	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  
The	
  signal	
  at	
  node	
  k	
  can	
  be	
  expressed	
  as	
  
	
  
	
  
	
  
Then	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Schwarz's	
  inequality	
  says	
  that	
  for	
  square-­‐integrable	
  complex-­‐valued	
  func9ons	
  f(x)	
  and	
  g(x)	
  ,	
  
	
  
	
  
	
  
Applying	
  this	
  inequality	
  to	
  the	
  previous	
  equa9on	
  and	
  using	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
provides	
  the	
  following	
  upper	
  bound	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa9on	
  6.125)	
  	
  
	
  
	
  
	
  

 xmax

wk(n) =
1
2π

Wk(e
jω)ejωn

−π

π

∫ dω = 1
2π

Hk(e
jω)X(ejω)

−π

π

∫ ejωndω.

| wk(n) |2  =  1
2π

Hk(e
jω)X(ejω)

−π

π

∫ ejωndω
2

.

f(x)g(x)∫  dx
2

≤ |f(x)∫ |2 dxi |g(x)∫ |2 dx.

f(ω) = Hk(e
jω) g(ω) = X(ejω)ejωn

 | wk(n) |2

 
| wk(n) |2  =  1

2π
Hk(e

jω )X(ejω )
−π

π

∫ ejωndω
2

≤ 1
2π

|Hk(e
jω)

−π

π

∫ |2 dω
⎛

⎝
⎜

⎞

⎠
⎟

1
2π

|Xk(e
jω)

−π

π

∫ |2 dω
⎛

⎝
⎜

⎞

⎠
⎟ .
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By	
  applying	
  Parseval's	
  rule	
  to	
  both	
  terms	
  on	
  the	
  right-­‐hand	
  side	
  above,	
  we	
  can	
  write	
  the	
  upper	
  
bound	
  on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  
Therefore,	
  to	
  ensure	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  all	
  nodes,	
  we	
  can	
  mul9ply	
  x(n)	
  by	
  the	
  scale	
  factor	
  s	
  	
  
where	
  s	
  sa9sfies	
  
	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa9on	
  6.126)	
  
	
  	
  
	
  	
  
The	
  corresponding	
  bound	
  on	
  s	
  is	
  	
  
	
  
	
  
	
  
To	
  summarize,	
  the	
  three	
  bounds	
  proposed	
  for	
  scaling	
  are	
  listed	
  below:	
  
First	
  method	
  considered:	
  	
  	
  	
  
	
  
	
  
	
  
Second	
  method	
  considered:	
  	
  	
  	
  	
  
	
  
	
  

 | wk(n) |2

| wk(n) |2  ≤  | hk(n) |2
n=−∞

∞

∑
⎛

⎝⎜
⎞

⎠⎟
| x(n) |2

n=−∞

∞

∑
⎛

⎝⎜
⎞

⎠⎟
.

 | wk(n) |  ≤  1

 

s2 | x(n) |2
n=−∞

∞

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
  =  s2E ≤  1

max
k

| h
k
(n)

n=∞

∞

∑ |2
.

s ≤  1

| x(n)
n=∞

∞

∑ |2
⎛

⎝⎜
⎞

⎠⎟
max

k
| hk(n)

n=∞

∞

∑ |2
.

 

s ≤   1

xmax( )max
k

| hk(m)
m=∞

∞

∑ |
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 

s ≤   1
xmax( )max

k,|ω|<π
|Hk(e

jω )|
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Third	
  method	
  considered:	
  	
  	
  	
  	
  
	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  
The	
  first	
  bound	
  is	
  more	
  conserva9ve	
  that	
  the	
  second	
  bound	
  since	
  
	
  	
  
	
  
For	
  most	
  signals,	
  the	
  third	
  bound	
  is	
  the	
  least	
  conserva9ve	
  of	
  the	
  three	
  founds.	
  	
  	
  The	
  third	
  bound	
  
is	
  usually	
  the	
  easiest	
  to	
  evaluate	
  analy9cally,	
  since	
  it	
  can	
  be	
  evaluated	
  using	
  the	
  z-­‐transform	
  
method	
  of	
  Appendix	
  A5,	
  finding	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  inverse	
  z-­‐transform	
  of	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  the	
  case	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
Note	
  1:	
  	
  If	
  a	
  scale	
  factor	
  s	
  <	
  1	
  is	
  used,	
  the	
  signal-­‐to-­‐noise	
  ra9o	
  at	
  the	
  system	
  output	
  is	
  reduced.	
  
Note	
  2:	
  	
  If	
  non-­‐satura9on	
  two-­‐complement	
  arithme9c	
  is	
  used,	
  it	
  is	
  not	
  necessary	
  to	
  examine	
  
every	
  node	
  in	
  the	
  system	
  for	
  possible	
  overflow.	
  	
  	
  Only	
  nodes	
  that	
  represent	
  "complete	
  
sums"	
  (not	
  "par9al	
  sums")	
  must	
  be	
  considered.	
  	
  
	
  
	
  
	
  

s ≤  1

| x(n)
n=∞

∞

∑ |2
⎛

⎝⎜
⎞

⎠⎟
max

k
| hk(n)

n=∞

∞

∑ |2
.

| hk(n)
n=∞

∞

∑ |2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/2

≤ max
k,|ω|<π

|Hk(e
jω)|  ≤  | hk(n)

n=∞

∞

∑ | .

 
| h(n)

n=∞

∞

∑ |2= γ yy(0)  γ yy(n)

 
Γ yy(z) = σx

2H(z)H*(1
z
)  σx

2 = 1

(equa9on	
  6.127)	
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Non-­‐satura9on	
  property	
  of	
  two-­‐complement	
  arithme9c:	
  
If	
  N	
  values	
  are	
  added	
  using	
  (N-­‐1)	
  steps	
  of	
  pair-­‐wise	
  addi9ons,	
  overflow	
  in	
  intermediate	
  sums	
  
does	
  not	
  affect	
  the	
  accuracy	
  of	
  the	
  overall	
  sum,	
  if	
  the	
  overall	
  sum	
  can	
  be	
  represented	
  correctly	
  
using	
  the	
  available	
  number	
  of	
  bits.	
  
	
  
Example	
  (using	
  4-­‐bit	
  two's	
  complement	
  format):	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  par9al	
  sum	
  	
  	
  	
  decimal	
  value	
  of	
  par9al	
  sum 	
   	
   	
  	
  
	
  	
  	
  0111	
  	
  	
  	
  	
  	
  (	
  7) 	
  	
  
+	
  0111	
  	
  	
  	
  	
  	
  (	
  7)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1110	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (-­‐2)	
   	
  	
  
+	
  1010	
  	
  	
  	
  	
  	
  (-­‐6)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1000	
  	
  	
  	
  	
  	
  	
  	
  	
  (-­‐8)	
  
+	
  1111	
  	
  	
  	
  	
  	
  (-­‐1)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0111	
  	
  	
  	
  	
  	
  	
  	
  	
  (7)	
  =	
  correct	
  sum	
  of	
  	
  7	
  +	
  7	
  -­‐	
  6	
  –	
  1	
  
	
  
The	
  figure	
  below	
  shows	
  the	
  nodes	
  for	
  which	
  scaling	
  must	
  be	
  examined	
  for	
  Direct	
  Form	
  I	
  and	
  
Direct	
  Form	
  II.	
  
	
  
	
  

Figure	
  6.62	
  Scaling	
  of	
  direct	
  	
  
form	
  systems.	
  	
  (a)	
  Direct	
  form	
  I.	
  	
  	
  
(b)	
  Direct	
  form	
  II.	
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 s2

 
N2−2B

12

 
(N +1)2−2B

12

If	
  the	
  input	
  x(n)	
  is	
  mul9plied	
  by	
  a	
  scale	
  factor	
  s	
  ,	
  the	
  overall	
  transfer	
  func9on	
  for	
  	
  	
  	
  	
  	
  
both	
  Direct	
  Form	
  I	
  and	
  Direct	
  Form	
  II	
  is	
  now	
  sH(z)	
  instead	
  of	
  H(z).	
  	
  

Therefore,	
  the	
  "good	
  signal"	
  part	
  of	
  the	
  output	
  is	
  sy(n)	
  instead	
  of	
  y(n).	
  

The	
  round-­‐off	
  noise	
  magnitude	
  is	
  not	
  affected	
  by	
  scaling,	
  since	
  round-­‐off	
  occurs	
  a`er	
  
scaling	
  for	
  both	
  forms	
  of	
  implementa9on.	
  	
  

Therefore,	
  the	
  ra9o	
  of	
  signal	
  power	
  to	
  noise	
  power	
  in	
  the	
  output	
  is	
  mul9plied	
  by	
  	
  	
  	
  	
  	
  
which	
  is	
  typically	
  less	
  than	
  1.	
  	
  

Note	
  that	
  for	
  Direct	
  Form	
  II,	
  the	
  scaling	
  step	
  itself	
  introduces	
  another	
  source	
  
of	
  round-­‐off	
  noise,	
  so	
  the	
  noise	
  power	
  in	
  the	
  input	
  is	
  increased	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
In	
  Direct	
  Form	
  I,	
  scaling	
  can	
  be	
  combined	
  with	
  the	
  bi	
  mul9pliers,	
  so	
  that	
  no	
  
addi9onal	
  sources	
  of	
  round-­‐off	
  error	
  is	
  required	
  to	
  implement	
  scaling.	
  	
  	
  
See	
  figure	
  6.62	
  on	
  the	
  previous	
  slide.	
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