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Interac(on	
  Between	
  Scaling	
  and	
  Round-­‐Off	
  Noise	
  	
  (Example	
  6.13)	
  
Consider	
  a	
  first	
  order	
  system	
  with	
  system	
  func(on	
  
	
  
	
  
An	
  implementa(on	
  of	
  the	
  above	
  system	
  with	
  scaling	
  added	
  is	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Figure	
  6.63	
  Scaled	
  first-­‐order	
  system.	
  

Assume	
  that	
  the	
  input	
  to	
  the	
  above	
  system	
  is	
  a	
  white	
  noise	
  signal	
  with	
  amplitudes	
  uniformly	
  
distributed	
  between	
  -­‐1	
  and	
  1.	
  	
  	
  
	
  
The	
  total	
  average	
  power	
  (signal	
  variance)	
  of	
  this	
  input	
  is	
  
	
  	
  
	
  
	
  

H(z) = b
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The	
  unit	
  sample	
  response	
  of	
  the	
  above	
  system,	
  without	
  scaling,	
  is	
  	
  
	
  
	
  
Because	
  of	
  the	
  simple	
  expression	
  for	
  h(n),	
  it	
  is	
  easy	
  to	
  base	
  our	
  scaling	
  on	
  the	
  bound	
  that	
  
involves	
  summing	
  the	
  magnitude	
  of	
  h(n)	
  values.	
  	
  (This	
  is	
  the	
  most	
  conserva(ve	
  bound.)	
  
To	
  prevent	
  overflow,	
  choose	
  the	
  scale	
  factor	
  	
  to	
  sa(sfy	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  	
  
	
  
	
  
In	
  an	
  example	
  in	
  Unit	
  14	
  which	
  did	
  not	
  include	
  any	
  scaling	
  (Example	
  6.11	
  from	
  the	
  text),	
  we	
  
found	
  that	
  that	
  the	
  output	
  noise	
  power	
  due	
  to	
  round-­‐off	
  error	
  for	
  the	
  system	
  of	
  this	
  example	
  is	
  
	
  
	
  
Since	
  scaling	
  of	
  the	
  input	
  does	
  not	
  affect	
  the	
  output	
  noise	
  power	
  due	
  to	
  internal	
  round-­‐off	
  error,	
  
we	
  know	
  that	
  for	
  the	
  scaling	
  case,	
  	
  
	
  
	
  
(The	
  primed	
  nota(on	
  of	
  	
  	
  	
  	
  	
  	
  is	
  for	
  the	
  "with	
  scaling"	
  case,	
  and	
  the	
  unprimed	
  nota(on	
  of	
  	
  	
  	
  	
  	
  	
  is	
  for	
  
the	
  "without	
  scaling"	
  case.)	
  
	
  
	
  
	
  

h(n) = b an u(n).
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For	
  the	
  current	
  example	
  (example	
  6.13)	
  ,	
  the	
  "signal"	
  input	
  is	
  white	
  noise	
  with	
  variance	
  of	
  (1/3)	
  
which	
  passes	
  though	
  a	
  mul(plier	
  	
  of	
  	
  	
  	
  	
  	
  	
  before	
  reaching	
  the	
  inser(on	
  point	
  of	
  round-­‐off	
  error	
  in	
  
the	
  example	
  of	
  Unit	
  14.	
  	
  Therefore,	
  the	
  power	
  of	
  the	
  "signal"	
  part	
  of	
  the	
  output	
  is	
  
	
  
	
  
	
  
If	
  no	
  scaling	
  is	
  used,	
  the	
  mul(plier	
  is	
  	
  	
  	
  instead	
  of	
  	
  	
  	
  	
  	
  ,	
  and	
  the	
  corresponding	
  power	
  of	
  the	
  "signal"	
  
part	
  of	
  the	
  output	
  would	
  be	
  	
  
	
  
	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  signal-­‐to-­‐noise	
  ra(o	
  of	
  the	
  "with	
  scaling"	
  case	
  is	
  
	
  
	
  
	
  
Note	
  that	
  as	
  the	
  pole	
  at	
  z	
  =	
  a	
  approaches	
  z	
  =	
  1,	
  the	
  signal-­‐to-­‐noise	
  ra(o	
  decreases	
  toward	
  zero.	
  
Although	
  the	
  scaling	
  prevents	
  overflow,	
  it	
  reduces	
  the	
  size	
  of	
  the	
  signal	
  and	
  does	
  not	
  affect	
  the	
  
size	
  of	
  the	
  round-­‐off	
  error.	
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Example	
  of	
  Analysis	
  of	
  a	
  Cascade	
  IIR	
  Structure	
  	
  
	
  
	
  
Consider	
  the	
  following	
  design	
  specifica(ons	
  for	
  an	
  ellip(c	
  low-­‐pass	
  filter:	
  
	
  
	
  
The	
  design	
  process	
  results	
  in	
  6-­‐th	
  order	
  filter,	
  whose	
  cascade	
  implementa(on	
  is	
  represented	
  by	
  
the	
  following	
  equa(on:	
  
	
  
	
  
The	
  coefficient	
  values	
  for	
  each	
  of	
  the	
  three	
  second	
  order	
  sec(ons	
  are	
  shown	
  in	
  the	
  table	
  below:	
  
	
  
	
  
	
  
	
  	
  
	
  

 0.99 ≤  | H(ejω ) |  ≤1.01,                  |ω| ≤ 0.5π
| H(ejω) |  ≤ 0.01,       0.56π ≤ |ω| ≤ π

H(z) = 0.079459 (1− b1kz
−1 + z−2)

(1− a1kz
−1 + a2kz

−2)k=1

3

∏ = 0.079459 Hk(z)
k=1

3

∏ .

TABLE	
  6.6	
  	
  COEFFICIENTS	
  FOR	
  
ELLIPTIC	
  LOWPASS	
  FILTER	
  IN	
  
CASCADE	
  FORM	
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An	
  implementa(on	
  consis(ng	
  of	
  a	
  cascade	
  of	
  three	
  second	
  order	
  transposed	
  Direct	
  Form	
  II	
  filters	
  
is	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Note:	
  	
  Pu_ng	
  the	
  gain	
  factor	
  of	
  	
  0.079459	
  at	
  the	
  input	
  side	
  of	
  the	
  implementa(on,	
  as	
  shown	
  in	
  
the	
  figure,	
  decreases	
  the	
  signal	
  to	
  noise	
  ra(o,	
  since	
  it	
  scales	
  all	
  of	
  the	
  signal,	
  but	
  none	
  of	
  the	
  
round-­‐off	
  noise.	
  	
  	
  
From	
  this	
  perspec(ve,	
  it	
  would	
  be	
  best	
  to	
  put	
  the	
  gain	
  factor	
  at	
  the	
  output,	
  so	
  that	
  it	
  would	
  
affect	
  the	
  signal	
  and	
  the	
  quan(za(on	
  the	
  same.	
  	
  However,	
  this	
  could	
  cause	
  overflow	
  at	
  cri(cal	
  
internal	
  nodes.	
  	
  	
  
	
  
A	
  beeer	
  approach	
  is	
  to	
  distribute	
  the	
  gain	
  throughout	
  the	
  three	
  stages,	
  possibly	
  along	
  with	
  
addi(onal	
  scaling,	
  so	
  that	
  overflow	
  is	
  barely	
  avoided	
  (avoided	
  by	
  a	
  small	
  margin)	
  at	
  each	
  cri(cal	
  
node.	
  	
  
	
  If	
  distributed	
  scaling	
  is	
  used,	
  we	
  can	
  represent	
  the	
  overall	
  system	
  func(on	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  	
  
	
  

 H(z) = s1H1(z)s2H2(z)s3H3(z) s1s2s3 = 0.079459
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H(z) = ( ′b0k − ′b11kz
−1 + ′b2kz

−2)
(1− a1kz

−1 + a2kz
−2)k=1

3

∏ = ′Hk(z)
k=1

3

∏

 ′b0k = ′b2k = sk

Rather	
  than	
  introduce	
  addi(onal	
  mul(pliers	
  (and	
  addi(onal	
  round-­‐off	
  error),	
  the	
  scaling	
  mul(pliers	
  can	
  
be	
  combined	
  with	
  the	
  filter	
  coefficients	
  in	
  each	
  of	
  the	
  three	
  second	
  order	
  sec(ons,	
  as	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  
	
  
The	
  resul(ng	
  implementa(on	
  is	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
In	
  each	
  of	
  the	
  three	
  second	
  order	
  sec(ons,	
  the	
  five	
  individual	
  round-­‐off	
  noise	
  sources	
  can	
  be	
  combined	
  
into	
  a	
  single,	
  "larger"	
  noise	
  source,	
  as	
  shown	
  in	
  the	
  following	
  figure.	
  	
  	
  
(These	
  noise	
  sources	
  are	
  s(ll	
  independent,	
  although	
  some	
  are	
  delayed	
  before	
  the	
  point	
  of	
  combining	
  
them	
  in	
  the	
  diagram.)	
  
	
  
	
  	
  	
  
	
  

′b1k = skb1k.
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Figure	
  6.64	
  Models	
  for	
  6th-­‐order	
  cascade	
  system	
  with	
  transposed	
  direct	
  form	
  II	
  subsystems.	
  (a)	
  Infinite-­‐
precision	
  model.	
  (b)	
  Linear-­‐noise	
  model	
  for	
  scaled	
  system,	
  showing	
  quan(za(on	
  of	
  individual	
  mul(plica(ons.	
  
(c)	
  Linear-­‐noise	
  model	
  with	
  noise	
  sources	
  combined.	
  
	
  

Note	
  that	
  the	
  combined	
  round-­‐off	
  error	
  injected	
  into	
  each	
  of	
  the	
  three	
  second	
  order	
  sec(ons	
  has	
  
a	
  unique	
  system	
  func(on	
  between	
  it	
  and	
  the	
  system	
  output.	
  	
  The	
  power	
  spectrum	
  of	
  the	
  output	
  
noise	
  due	
  to	
  all	
  internal	
  sources	
  of	
  round-­‐off	
  error	
  can	
  be	
  expressed	
  as	
  
	
  
	
  
The	
  total	
  output	
  noise	
  power	
  is	
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(Alterna(vely,	
  	
  	
  	
  	
  	
  	
  	
  could	
  also	
  be	
  found	
  using	
  the	
  z-­‐transform	
  approach	
  of	
  Appendix	
  A5.)	
  
If	
  a	
  double-­‐length	
  accumulator	
  is	
  used,	
  it	
  would	
  be	
  necessary	
  to	
  quan(ze	
  only	
  the	
  output	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  of	
  
each	
  filter	
  sec(on	
  and	
  sums	
  that	
  feed	
  a	
  delay	
  element	
  within	
  each	
  filter	
  sec(on.	
  	
  	
  
	
  
Using	
  a	
  double-­‐length	
  accumulator	
  would	
  reduce	
  the	
  factor	
  of	
  5	
  in	
  the	
  above	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  to	
  3.	
  	
  
	
  
	
  In	
  addi(on,	
  if	
  double	
  length	
  registers	
  are	
  available	
  to	
  implement	
  the	
  delay	
  elements,	
  only	
  the	
  output	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
of	
  each	
  of	
  the	
  three	
  filter	
  sec(ons	
  has	
  to	
  be	
  rounded	
  off.	
  	
  In	
  this	
  case,	
  the	
  factor	
  of	
  5	
  in	
  the	
  above	
  
equa(on	
  would	
  be	
  reduced	
  further	
  to	
  unity.	
  	
  	
  
	
  
The	
  gain	
  factors	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  selected	
  one	
  at	
  a	
  (me	
  to	
  prevent	
  overflow	
  at	
  the	
  cri(cal	
  
nodes	
  in	
  the	
  cascade	
  implementa(on.	
  	
  For	
  example,	
  we	
  could	
  follow	
  the	
  following	
  procedure:	
  
	
  
Step	
  1:	
  	
  Choose	
  	
  	
  	
  	
  	
  so	
  that	
  
	
  
Step	
  2:	
  	
  Choose	
  	
  	
  	
  	
  	
  so	
  that	
  	
  
	
  
Step	
  3:	
  	
  Choose	
  	
  	
  	
  	
  	
  so	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
For	
  the	
  6-­‐th	
  order	
  ellip(c	
  filter	
  whose	
  designed	
  coefficients	
  are	
  shown	
  in	
  Table	
  6.6,	
  the	
  values	
  of	
  the	
  
three	
  scale	
  factors	
  determine	
  by	
  the	
  above	
  procedure	
  are:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  
	
  
	
  	
  
	
  
	
  
	
  

 σf
2

 ̂wk(n)

 σf
2

 ̂wk(n)

  s1,  s2,  s3

 s1  
s1max

|ω|<π
| H1(e

jω ) |  <1

 s2  
s1s2 max

|ω|<π
| H1(e

jω )H2(e
jω ) |  <1

 s3  s1s2s3 = 0.079459

 s1 = 0.186447  s2 = 0.529236  s3 = 0.805267
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Recall	
  that	
  for	
  a	
  filter	
  having	
  N	
  second	
  order	
  sec(ons,	
  there	
  are	
  N!	
  ways	
  to	
  pair	
  the	
  poles	
  and	
  
zeros.	
  	
  
	
  
	
  In	
  addi(on,	
  there	
  are	
  N!	
  ways	
  to	
  order	
  the	
  resul(ng	
  second	
  order	
  sec(ons.	
  	
  
	
  
	
  Furthermore,	
  each	
  second	
  order	
  sec(on	
  can	
  be	
  realized	
  using	
  Direct	
  Form	
  I,	
  Direct	
  Form	
  II,	
  the	
  
transpose	
  of	
  Direct	
  Form	
  I,	
  or	
  the	
  transpose	
  of	
  Direct	
  Form	
  II.	
  
	
  
Therefore,	
  the	
  total	
  number	
  of	
  ways	
  to	
  implement	
  a	
  cascade	
  of	
  N	
  second	
  order	
  sec(ons,	
  using	
  
the	
  above	
  op(ons,	
  	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  For	
  the	
  above	
  example	
  for	
  which	
  N	
  =	
  3,	
  the	
  total	
  number	
  of	
  
configura(ons	
  is	
  thus	
  
	
  
For	
  N	
  =	
  4,	
  this	
  number	
  would	
  be	
  
	
  
	
  
For	
  N	
  =	
  5,	
  the	
  number	
  of	
  configura(ons	
  of	
  second	
  order	
  sec(ons	
  would	
  become	
  
	
  
	
  
"Rules	
  of	
  thumb"	
  for	
  selec(ng	
  the	
  desired	
  configura(on	
  of	
  second	
  order	
  sec(on	
  for	
  a	
  filter:	
  
1.	
  Pair	
  the	
  pole	
  that	
  is	
  closest	
  to	
  the	
  unit	
  circle	
  with	
  the	
  zero	
  that	
  is	
  closest	
  to	
  it.	
  	
  
2.	
  Repeat	
  Rule	
  1	
  un(l	
  all	
  poles	
  and	
  zeros	
  have	
  been	
  paired.	
  
3.	
  Order	
  the	
  resul(ng	
  second-­‐order	
  sec(ons	
  according	
  to	
  either	
  increasing	
  pole	
  closeness	
  to	
  the	
  
unit	
  circle	
  OR	
  decreasing	
  pole	
  closeness	
  to	
  the	
  unit	
  circle.	
  
	
  	
  
	
  
	
  
	
  

 4(N!)2

 4(N!)2 = 4(3!)2 = 144

 4(4!)2 = 2,304

 4(5!)2 = 57,600
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Rules	
  1	
  and	
  2	
  (the	
  pairing	
  rules)	
  are	
  based	
  the	
  fact	
  that	
  that	
  poles	
  near	
  the	
  unit	
  circle	
  cause	
  high	
  
peak	
  gain,	
  and	
  this	
  can	
  cause	
  two	
  types	
  of	
  problems:	
  

	
  -­‐	
  overflow	
  
	
  -­‐	
  amplifica(on	
  of	
  quan(za(on	
  error	
  	
  

	
  
By	
  pairing	
  a	
  nearby	
  zero	
  to	
  a	
  pole	
  close	
  to	
  the	
  unit	
  circle,	
  we	
  minimize	
  the	
  high	
  gain	
  due	
  to	
  that	
  
pole.	
  
	
  
Rule	
  3	
  is	
  based	
  on	
  the	
  following	
  two	
  contradictory	
  considera(ons:	
  
	
  
-­‐	
  Having	
  a	
  "high	
  Q"	
  pole	
  near	
  the	
  input	
  means	
  that	
  most	
  of	
  the	
  internally	
  generated	
  round-­‐off	
  
noise	
  doesn't	
  have	
  to	
  pass	
  through	
  it.	
  
	
  
-­‐On	
  the	
  other	
  hand,	
  a	
  high	
  Q	
  pole	
  near	
  the	
  input	
  means	
  that	
  the	
  input	
  will	
  probably	
  have	
  to	
  be	
  
reduced	
  by	
  major	
  scaling,	
  to	
  prevent	
  overflow,	
  and	
  this	
  will	
  degrade	
  the	
  signal	
  to	
  noise	
  ra(o	
  at	
  
the	
  output.	
  	
  	
  

Which	
  of	
  the	
  above	
  two	
  considera(ons	
  should	
  be	
  followed	
  depends	
  on	
  the	
  characteris(cs	
  of	
  the	
  
filter	
  being	
  implemented.	
  
	
  
An	
  example	
  of	
  pairing	
  zeros	
  with	
  poles	
  and	
  of	
  ordering	
  the	
  resul(ng	
  second	
  order	
  sec(ons	
  for	
  
the	
  6th	
  order	
  ellip(c	
  filter	
  previously	
  discussed	
  are	
  shown	
  in	
  the	
  figure	
  below.	
  	
  In	
  this	
  figure,	
  
ordering	
  is	
  based	
  on	
  the	
  "least	
  peaked"	
  to	
  "most	
  peaked"	
  op(on.	
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Figure	
  6.65	
  Pole-­‐zero	
  plot	
  for	
  sixth-­‐order	
  system	
  if	
  Figure	
  6.64,	
  showing	
  pairing	
  of	
  poles	
  and	
  zeros.	
  
	
  

The	
  following	
  figure	
  shows	
  the	
  individual	
  frequency	
  response	
  of	
  each	
  of	
  the	
  second	
  order	
  
sec(ons	
  of	
  the	
  overall	
  filter:	
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Figure	
  6.66	
  Frequency-­‐response	
  func(ons	
  for	
  example	
  system	
   (a)	
  	
  

(b)	
  	
  
(c)	
  	
  

20 log10 H1 e
jω( )

20 log10 H2 e
jω( )

20 log10 H 3 e
jω( )
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The	
  following	
  figure	
  shows	
  how	
  the	
  overall	
  frequency	
  response	
  of	
  the	
  6-­‐th	
  order	
  filter	
  is	
  "built	
  
up"	
  from	
  the	
  second	
  order	
  components:	
  
	
  
	
  

Figure	
  6.66	
  (con(nued)	
  

(d)	
  

(e)	
  

(f)	
  

20 log10 H
'
1 e

jω( )
20 log10 H

'
1 e

jω( )H '
2 e

jω( )
20 log10 H

'
1 e

jω( )H '
2 e

jω( )H '
3 e

jω( ) = 20 log10 H ' e jω( )
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In	
  the	
  previous	
  figure,	
  note	
  that	
  the	
  previous	
  method	
  of	
  scaling	
  has	
  successfully	
  kept	
  the	
  
maximum	
  gain	
  from	
  the	
  input	
  to	
  the	
  output	
  of	
  any	
  subsystem	
  less	
  than	
  unity.	
  
	
  
Figure	
  6.67	
  below	
  shows	
  the	
  power	
  spectrum	
  of	
  the	
  output	
  noise	
  for	
  a	
  "123"	
  ordering	
  (least	
  
peaked	
  to	
  most	
  peaked)	
  and	
  for	
  a	
  "321"	
  ordering	
  (most	
  peaked	
  to	
  least	
  peaked).	
  	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  total	
  noise	
  power	
  for	
  the	
  two	
  above	
  orderings	
  is	
  based	
  on	
  the	
  integral	
  of	
  each	
  curve	
  in	
  the	
  
above	
  figure,	
  and	
  is	
  therefore	
  about	
  the	
  same,	
  in	
  this	
  example.	
  
	
  
	
  
	
  

Figure	
  6.67	
  	
  Output	
  noise	
  power	
  
Spectrum	
  for	
  123	
  ordering	
  (solid	
  line)	
  
And	
  321	
  ordering	
  of	
  second-­‐order	
  	
  
Sec(ons.	
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Parallel	
  Form	
  
	
  
It	
  is	
  been	
  shown	
  that	
  an	
  implementa(on	
  consis(ng	
  of	
  a	
  parallel	
  second	
  order	
  sec(ons	
  has	
  total	
  
output	
  noise	
  power	
  similar	
  to	
  that	
  of	
  the	
  best	
  pairing	
  and	
  order	
  for	
  the	
  cascade	
  form.	
  However,	
  
due	
  to	
  implementa(on	
  issues,	
  the	
  cascade	
  form	
  has	
  been	
  more	
  popular	
  in	
  most	
  applica(ons.	
  	
  	
  
	
  	
  
Round-­‐Off	
  Noise	
  in	
  FIR	
  Filters	
  
The	
  effect	
  of	
  round-­‐off	
  in	
  FIR	
  filters	
  is	
  a	
  special	
  case	
  of	
  the	
  noise	
  analysis	
  for	
  IIR	
  filters	
  for	
  the	
  case	
  
of	
  N	
  =	
  0.	
  	
  	
  A	
  signal	
  flow	
  diagram	
  for	
  an	
  FIR	
  filter	
  showing	
  injec(on	
  of	
  round-­‐off	
  noise	
  is	
  shown	
  
below:	
  
	
  
	
  

Figure	
  6.68	
  Direct-­‐form	
  of	
  an	
  FIR	
  system.	
  (a)	
  Infinite-­‐precision	
  model.	
  (b)	
  Linear-­‐noise	
  model.	
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In	
  the	
  previous	
  figure,	
  all	
  M	
  +	
  1	
  noise	
  sources	
  are	
  injected	
  directly	
  to	
  the	
  output.	
  	
  Therefore,	
  the	
  
output	
  noise	
  variance	
  is	
  
	
  
	
  
However,	
  if	
  a	
  double	
  length	
  accumulator	
  is	
  used,	
  it	
  is	
  only	
  necessary	
  to	
  round-­‐off	
  the	
  output,	
  and	
  
the	
  factor	
  of	
  M+1	
  in	
  the	
  above	
  expression	
  would	
  be	
  reduced	
  to	
  unity.	
  
	
  
Overflow	
  in	
  FIR	
  Filters	
  
Overflow	
  in	
  FIR	
  filters	
  can	
  be	
  prevented	
  using	
  the	
  same	
  scaling	
  methods	
  developed	
  for	
  IIR	
  filters.	
  	
  	
  
	
  
However,	
  if	
  two's	
  complement	
  arithme(c	
  is	
  used,	
  we	
  only	
  need	
  to	
  be	
  concerned	
  with	
  the	
  size	
  of	
  
the	
  output,	
  since	
  all	
  of	
  the	
  other	
  sums	
  are	
  par(al	
  sums.	
  	
  	
  
The	
  scaling	
  constant	
  can	
  be	
  determined	
  using	
  any	
  of	
  the	
  three	
  methods	
  developed	
  for	
  IIR	
  filters,	
  
as	
  shown	
  in	
  the	
  following	
  example.	
  
	
  
Example	
  6.14	
  (Scaling	
  Considera(ons	
  for	
  the	
  FIR	
  System	
  in	
  Sec(on	
  6.8.5)	
  
For	
  this	
  filter,	
  a	
  value	
  of	
  M	
  =	
  27	
  was	
  required	
  to	
  meet	
  the	
  design	
  specifica(ons.	
  	
  For	
  this	
  27th	
  
order	
  filter,	
  the	
  three	
  candidate	
  methods	
  for	
  selec(ng	
  the	
  scale	
  factor	
  are	
  shown	
  below:	
  
	
  

σf
2 = (M +1)2

−2B

12 .

 
| h(n) |  =  

n=0

27
∑ 1.751352

 
| h(n) |2

n=0

27
∑

⎛

⎝
⎜

⎞

⎠
⎟

1
2
= 0.6794421

 
max
|ω|<π

| H(ejω ) ≈ 1.009
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Based	
  on	
  the	
  above,	
  overflow	
  is	
  probably	
  unlikely	
  for	
  most	
  inputs,	
  and	
  scaling	
  might	
  not	
  be	
  used.	
  	
  	
  
However,	
  if	
  absolutely	
  no	
  chance	
  of	
  overflow	
  can	
  be	
  tolerated,	
  scaling	
  could	
  be	
  implemented	
  by	
  
dividing	
  each	
  value	
  of	
  h(n)	
  by	
  1.751352.	
  	
  (This	
  assume	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .)	
  
	
  	
  
Note:	
  	
  We	
  have	
  seen	
  that	
  for	
  generalized	
  linear	
  phase,	
  the	
  number	
  of	
  mul(plica(ons	
  (and	
  
therefore,	
  poten(al	
  sources	
  of	
  round-­‐off	
  error)	
  can	
  be	
  reduced	
  by	
  a	
  factor	
  of	
  2	
  by	
  taking	
  
advantage	
  of	
  the	
  symmetry	
  of	
  h(n).	
  	
  	
  
However,	
  most	
  DSP	
  processors	
  have	
  double-­‐length	
  accumulators	
  with	
  pipelined	
  mul(pliers,	
  so	
  
that	
  direct	
  form	
  of	
  implementa(on	
  (without	
  taking	
  advantage	
  of	
  the	
  symmetry	
  of	
  h(n))	
  is	
  
typically	
  used.	
  	
  
	
  
Round-­‐Off	
  Error	
  When	
  Floa(ng	
  Point	
  Arithme(c	
  is	
  Used	
  
	
  	
  
Floa(ng	
  point	
  representa(on	
  of	
  numbers	
  provides	
  a	
  means	
  of	
  represen(ng	
  a	
  large	
  range	
  of	
  
values	
  and	
  involving	
  a	
  low	
  level	
  of	
  quan(za(on	
  noise.	
  	
  
	
  	
  
In	
  floa(ng	
  point	
  arithme(c,	
  each	
  value	
  is	
  represented	
  using	
  the	
  format	
  
	
  
The	
  exponent	
  	
  	
  	
  	
  is	
  called	
  the	
  characteris(c.	
  
	
  
The	
  other	
  component,	
  	
  	
  	
  	
  ,	
  is	
  a	
  frac(on	
  and	
  is	
  call	
  the	
  man(ssa.	
  
Both	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  are	
  represented	
  as	
  fixed-­‐point	
  binary	
  numbers.	
  	
  	
  
	
  
	
  
	
  

 Xm = 1

 x = 2cxM

 c

 xM

 c  xM
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When	
  floa(ng	
  point	
  numbers	
  are	
  mul(plied,	
  their	
  characteris(cs	
  are	
  added	
  and	
  their	
  man(ssas	
  
are	
  mul(plied.	
  	
  Round-­‐off	
  error	
  occurs	
  when	
  these	
  man(ssas	
  are	
  mul(plied.	
  
	
  	
  
When	
  floa(ng	
  point	
  number	
  are	
  added,	
  their	
  characteris(cs	
  must	
  be	
  adjusted	
  to	
  be	
  the	
  same	
  
which	
  involves	
  moving	
  the	
  binary	
  point	
  for	
  one	
  of	
  the	
  numbers.	
  	
  	
  
This	
  adjustment	
  can	
  introduce	
  round-­‐off	
  error,	
  and	
  this	
  error	
  is	
  inherently	
  scaled	
  by	
  the	
  value	
  of	
  
the	
  characteris(c.	
  	
  
	
  
Thus,	
  a	
  quan(zed	
  floa(ng	
  point	
  number	
  	
  	
  	
  	
  can	
  be	
  represented	
  in	
  term	
  of	
  the	
  desired	
  value	
  	
  	
  	
  	
  	
  
and	
  the	
  round-­‐off	
  error	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  
	
  
Zero-­‐Input	
  Limit	
  Cycles	
  in	
  Fixed-­‐Point	
  Realiza(ons	
  of	
  Digital	
  Filters	
  
	
  	
  
A	
  zero-­‐input	
  limit	
  cycle	
  occurs	
  when	
  the	
  input	
  	
  to	
  a	
  LTI	
  system	
  goes	
  to	
  zero	
  and	
  remains	
  at	
  zero,	
  
but	
  the	
  output	
  oscillates	
  indefinitely	
  in	
  a	
  periodic	
  paeern	
  or	
  stays	
  at	
  a	
  constant,	
  non-­‐zero	
  value,	
  
due	
  to	
  round-­‐off	
  noise	
  or	
  overflow	
  .	
  
	
  

  ̂x  x
ε

x̂ = 2c(xM + ε)

  = x + 2cε
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Example:	
  (Limit	
  cycle	
  due	
  to	
  round-­‐off	
  error)	
  
	
  
Consider	
  the	
  first-­‐order	
  system	
  described	
  by	
  the	
  following	
  difference	
  equa(ons.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  a	
  <	
  1.	
  
	
  
Signal	
  flow	
  diagrams	
  (a)	
  with	
  ideal	
  arithme(c	
  and	
  (b)	
  with	
  round-­‐off	
  effects	
  are	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Because	
  of	
  round-­‐off	
  effects,	
  the	
  actual	
  input/output	
  rela(on	
  for	
  the	
  system	
  is	
  
	
  
	
  
	
  
	
  

 y(n) = ay(n −1) + x(n)

Figure	
  6.69	
  1st-­‐order	
  IIR	
  system.	
  (a)	
  Infinite-­‐precision	
  
linear	
  system.	
  	
  (b)Nonlinear	
  system	
  due	
  to	
  quan(za(on.	
  

 ̂y(n) = Q[aŷ(n −1)] + x(n)
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Assume	
  that	
  4-­‐bit	
  fixed-­‐point	
  arithme(c	
  is	
  used	
  to	
  implement	
  this	
  filter	
  and	
  that	
  when	
  a	
  number	
  
to	
  be	
  rounded	
  is	
  half	
  way	
  between	
  representable	
  values,	
  the	
  number	
  is	
  rounded	
  up	
  to	
  the	
  higher	
  
value.	
  	
  	
  
	
  
Consider	
  the	
  case	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  when	
  represented	
  as	
  a	
  two's	
  complement	
  frac(on.	
  
Consider	
  the	
  following	
  input	
  to	
  the	
  system:	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  limit	
  cycle	
  output	
  corresponding	
  to	
  the	
  above	
  table	
  is	
  ploeed	
  below:	
  
	
  
	
  

  a = (1/ 2) = 0.100

  x(n) = (7 / 8) δ(n) =  0.111 δ(n)
Response	
  of	
  the	
  filter	
  to	
  this	
  input	
  is	
  as	
  follows:	
  

  

n         x(n)         aŷ(n-1)                Q[aŷ(n-1)]         ŷ(n)
0        0.111                                                          0.111      
1         0.000      0.011100               0.100              0.100            
2        0.000      0.010000                0.010             0.010
3        0.000      0.001000                0.001             0.001
4        0.000      0.000100                0.001             0.001
5        0.000      0.000100                0.001             0.001
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If	
  the	
  filter	
  parameter	
  "a"	
  were	
  equal	
  to	
  -­‐(1/2)	
  instead	
  of	
  (1/2),	
  the	
  following	
  limit	
  cycle	
  output	
  
would	
  occur:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Limit	
  Cycles	
  due	
  to	
  Overflow	
  
Consider	
  the	
  system	
  represented	
  by	
  the	
  following	
  difference	
  equa(on:	
  
	
  
	
  
Assume	
  the	
  following	
  values	
  for	
  filter	
  parameters:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  
Also	
  assume	
  that	
  input	
  x(n)	
  =	
  0	
  for	
  all	
  n	
  ≥	
  0	
  and	
  that	
  the	
  following	
  ini(al	
  condi(ons	
  are	
  present:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  
	
  
	
  
	
  

 ̂y(n) = x(n) + Q[a1̂y(n −1)] + Q[a2ŷ(n − 2)

 a1 = (3 / 4) = 0.110  a2 = −(3 / 4) = 1.010

 ̂y(−1) = (3 / 4) = 0.110  ̂y(−2) = −(3 / 4) = 1.010

Figure	
  6.70	
  Response	
  of	
  the	
  1st-­‐order	
  
System	
  of	
  Figure	
  6.69	
  to	
  an	
  impulse.	
  
(a)  a	
  =	
  ½	
  	
  (b)	
  	
  a	
  =	
  -­‐	
  ½	
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Assume	
  that	
  if	
  the	
  value	
  to	
  be	
  rounded	
  is	
  halfway	
  between	
  two	
  available	
  quan(zer	
  output	
  
values,	
  the	
  value	
  which	
  is	
  larger	
  in	
  magnitude	
  is	
  selected	
  as	
  output.	
  	
  For	
  example,	
  a	
  value	
  of	
  
-­‐9/16	
  is	
  rounded	
  to	
  -­‐10/16	
  =	
  -­‐5/8,	
  not	
  to	
  -­‐8/16	
  =	
  -­‐1/2.	
  
	
  
The	
  table	
  below	
  shows	
  how	
  limit	
  cycles	
  output	
  of	
  this	
  filter	
  for	
  0	
  ≤	
  n	
  ≤	
  3.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Ways	
  to	
  Reduce	
  the	
  Likelihood	
  of	
  Limit	
  Cycles	
  in	
  Digital	
  Filters	
  
	
  	
  
1.	
  	
  Use	
  longer	
  word	
  length	
  
2.	
  	
  Use	
  double-­‐length	
  accumulator	
  
3.	
  	
  Use	
  implementa(on	
  structures	
  that	
  do	
  not	
  support	
  limit	
  cycles.	
  
	
  	
  
Note:	
  	
  Limit	
  cycles	
  cannot	
  occur	
  in	
  FIR	
  filters,	
  since	
  FIR	
  filters	
  have	
  no	
  feedback	
  paths	
  	
  
	
  
	
  

n        a1̂y(n-1)      Q[a1̂y(n-1)]     a2ŷ(n-2)       Q[a2ŷ(n-2]         ŷ(n)

−2                                                                                       1.010
−1                                                                                        0.110
  0       0.100100      0.101           0.100100       0.101          1.010 *
  1       1.011100      1.011           1.011100       1.011          0.110 **
  2       0.100100      0.101           0.100100       0.101          1.010 *
  3       1.011100      1.011           1.011100       1.011          0.110 **

* The sum of two positive values produces a negative result ⇒  Overflow
** The sum of two negative values produces a positive result ⇒  Overflow
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