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Chapter	
  7	
  -­‐	
  "Filter	
  Design	
  Techniques"	
  
	
  	
  
Review:	
  	
  Methods	
  of	
  Designing	
  IIR	
  Digital	
  Filters	
  
	
  
•	
  Bilinear	
  Transforma;on	
  Method	
  
-­‐  Good	
  for	
  transforming	
  analog	
  filters	
  with	
  flat	
  pass-­‐bands,	
  including	
  low-­‐pass,	
  high-­‐pass,	
  

band-­‐pass,	
  and	
  band-­‐reject.	
  	
  
	
  	
  
-­‐	
  BuGerworth,	
  Chebyshev,	
  Ellip;c	
  filter	
  types	
  
	
  	
  
•	
  Impulse	
  Invariance	
  
-­‐	
  Good	
  for	
  transforming	
  analog	
  filters	
  which	
  have	
  band-­‐limited	
  response	
  
-­‐	
  BuGerworth,	
  Chebyshev,	
  Ellip;c	
  filter	
  types	
  
	
  
•	
  Minimum	
  Mean-­‐Squared	
  Method	
  
-­‐	
  Computer	
  method	
  for	
  designing	
  IIR	
  filters	
  to	
  approximate	
  an	
  arbitrary	
  frequency	
  	
  	
  	
  	
  	
  
	
  	
  	
  (Matlab's	
  "yulewalk"	
  rou;ne	
  can	
  design	
  IIR	
  filters	
  to	
  approximate	
  a	
  piece-­‐wise	
  linear	
  frequency	
  	
  
response	
  func;on)	
  

	
  	
  
•	
  Other	
  methods	
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Methods	
  of	
  Designing	
  FIR	
  Digital	
  Filters	
  
•	
  Window	
  Method	
  
•	
  Designing	
  Op;mum	
  FIR	
  filters	
  Using	
  Matlab's	
  "firpm"	
  algorithm	
  
	
  	
  
Review	
  of	
  Window	
  Method	
  
1.  Find	
  h(n)	
  associated	
  with	
  desired	
  frequency	
  response	
  func;on.	
  	
  (Usually	
  get	
  infinitely	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  long	
  h(n).)	
  
2.  Mul;ply	
  h(n)	
  from	
  step	
  1	
  by	
  finite	
  dura;on	
  window	
  func;on	
  to	
  obtain	
  FIR	
  filter.	
  	
  	
  

Example	
  of	
  Window	
  Method	
  
To	
  obtain	
  a	
  causal	
  FIR	
  low-­‐pass	
  filter	
  or	
  order	
  M,	
  we	
  typically	
  start	
  with	
  
	
  
	
  
	
  
Then	
  
	
  
	
  

Hlp(e
jω) = e

− jωM
2 ,       |ω| ≤ ωc

 = 0,      ωc  ≤ ω ≤ π

hlp(n) =
1
2π

Hlp(e
jω)

−π

π

∫ ejωndω

= 1
2π e− jωM

2ejωn dω
−ω

c

ω
c

∫   =   
sin[ωc(n − M

2)]

π(n − M
2)

'       n ≠  M
2

 
=
ωc
π

,       n= M
2
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The	
  unit	
  sample	
  response	
  for	
  the	
  FIR	
  approxima;on	
  to	
  this	
  filter	
  is	
  obtained	
  by	
  mul;plying	
  	
  	
  
by	
  an	
  appropriate	
  window	
  func;on:	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  0	
  outside	
  the	
  range	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  is	
  symmetric	
  around	
  its	
  mid-­‐point	
  of	
  	
  	
  	
  	
  	
  and	
  since	
  all	
  candidate	
  window	
  func;ons	
  are	
  
symmetric,	
  the	
  resul;ng	
  FIR	
  filter	
  with	
  have	
  generalized	
  linear	
  phase	
  and	
  will	
  be	
  either	
  Type	
  I	
  or	
  
Type	
  II,	
  depending	
  on	
  whether	
  M	
  is	
  even	
  or	
  odd.	
  
	
  
A	
  plot	
  of	
  several	
  commonly	
  used	
  windows	
  is	
  shown	
  below:	
  
	
  
	
  

  hlp(n)

 h(n) = hlp(n)w(n)

  w(n)  0 ≤ n ≤ M

  h(n)
 
M
2

Figure	
  7.29	
  	
  Commonly	
  used	
  windows.	
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The	
  Fourier	
  Transforms	
  of	
  the	
  above	
  windows	
  are	
  shown	
  in	
  the	
  figure	
  below:	
  
	
  

Figure	
  7.30	
  	
  Fourier	
  transforms	
  (log	
  
magnitude)	
  of	
  windows	
  of	
  Figure	
  7.29	
  
With	
  M	
  =	
  50.	
  	
  (a)	
  Rectangular	
  (b)	
  BartleG	
  
(c)	
  Hanning	
  (d)	
  Hamming	
  (e)	
  Blackman	
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Frequency	
  Domain	
  Effects	
  of	
  Windowing	
  
Mul;plying	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  	
  	
  	
  	
  	
  	
  	
  	
  corresponds	
  to	
  convolu;on	
  of	
  the	
  corresponding	
  frequency	
  domain	
  
func;ons:	
  
	
  
	
  
The	
  DTFT	
  of	
  a	
  typical	
  window	
  func;on	
  and	
  its	
  effect	
  in	
  the	
  above	
  integral	
  are	
  shown	
  below:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Related	
  to	
  Figure	
  7.31	
  

 hlp(n)   w(n)

 
H(ejω ) = 1

2π
Hlp(e

jθ)
−π

π

∫ W(ej(ω−θ))dθ

Figure	
  7.31	
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For	
  any	
  window	
  func;on	
  w(n),	
  the	
  width	
  of	
  the	
  main	
  lobe	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  reduced	
  by	
  extending	
  
the	
  length	
  of	
  the	
  window.	
  	
  	
  
On	
  the	
  other	
  hand,	
  the	
  size	
  of	
  the	
  peak	
  side-­‐lobe	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  independent	
  of	
  the	
  window	
  length.	
  	
  
	
  
The	
  following	
  Table	
  summarizes	
  the	
  features	
  of	
  interest	
  in	
  several	
  popular	
  window	
  func;ons.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Selec;on	
  of	
  window	
  type	
  and	
  length	
  
1.	
  Select	
  window	
  type	
  that	
  provides	
  sufficiently	
  small	
  ripple	
  	
  	
  	
  	
  ,	
  using	
  above	
  table.	
  
2.	
  	
  For	
  selected	
  window	
  type,	
  determine	
  window	
  length	
  needed	
  to	
  provide	
   	
  	
  	
   	
  	
  	
   	
  	
  	
  	
  
sufficiently	
  narrow	
  transi;on	
  region,	
  again	
  using	
  above	
  table. 	
  	
  
	
  	
  
	
  

  W(ejω)

  W(ejω)

δ

TABLE	
  7.2	
  	
  COMPARISON	
  OF	
  COMMONLY	
  USED	
  WINDOWS	
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High-­‐pass	
  filters,	
  band-­‐pass	
  filters,	
  and	
  mul;-­‐band	
  filters	
  can	
  be	
  designed	
  using	
  low-­‐pass	
  filters	
  as	
  
building	
  blocks.	
  	
  For	
  example,	
  for	
  the	
  desired	
  response	
  func;on	
  of	
  the	
  type	
  shown	
  below	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
We	
  could	
  obtain	
  the	
  unit	
  sample	
  response	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  the	
  mul;band	
  filter	
  as	
  follows:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  7.81)	
  
	
  
Kaiser	
  Window	
  
The	
  "Kaiser	
  window"	
  is	
  actually	
  a	
  family	
  of	
  window	
  func;ons	
  with	
  a	
  parameter	
  	
  	
  	
  which	
  can	
  be	
  
adjusted	
  to	
  ensure	
  that	
  both	
  design	
  condi;ons	
  (small	
  enough	
  ripple,	
  narrow	
  enough	
  transi;on	
  
region)	
  are	
  met.	
  	
  (See	
  figure	
  below.)	
  
	
  

  hmb(n)

 

hmb(n) = (Gk − Gk+1)
k=1

Nmb

∑
sinωk(n − M

2)

π(n − M
2)

,       n ≠ M
2

β

Figure	
  7.37	
  	
  Ideal	
  frequency	
  response	
  
for	
  mul;band	
  filter	
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(b) 

Figure	
  7.32	
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Steps	
  in	
  Designing	
  FIR	
  Filters	
  Using	
  the	
  Window	
  Method	
  with	
  Kaiser	
  Windows	
  
1.	
  For	
  a	
  given	
  value	
  of	
  	
  	
  	
  	
  	
  ,	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  (	
  	
  	
  	
  is	
  the	
  peak	
  approxima;on	
  error)	
  
2.	
  Set	
  the	
  parameter	
  	
  	
  	
  	
  as	
  follows:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on.	
  7.75)	
  
	
  
3.	
  Select	
  the	
  first	
  approxima;on	
  to	
  the	
  required	
  filter	
  length	
  M	
  using	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  7.76)	
  
	
  
The	
  table	
  below,	
  which	
  is	
  an	
  extended	
  version	
  of	
  the	
  table	
  previously	
  provided,	
  shows	
  the	
  	
  	
  	
  
values	
  needed	
  for	
  Kaiser	
  window	
  in	
  order	
  to	
  achieve	
  the	
  size	
  of	
  	
  	
  	
  	
  	
  that	
  is	
  fixed	
  for	
  each	
  of	
  the	
  
other	
  window	
  types.	
  	
  	
  
The	
  right-­‐hand	
  	
  column	
  in	
  the	
  table	
  provides	
  the	
  transi;on	
  width	
  for	
  the	
  Kaiser	
  window	
  for	
  the	
  
corresponding	
  value	
  of	
  	
  	
  	
  	
  (and	
  therefore	
  of	
  A),	
  as	
  func;on	
  of	
  window	
  length	
  M.	
  
	
  
	
  
	
  
	
  

δ   A = −20logδ δ
β

 

β =
0.1102(A − 8.7),               A > 50
0.5842(A − 21)0.4 + 0.07886(A − 21),       21≤ A ≤ 50
0.0,                                 A < 21             

⎧

⎨
⎪

⎩
⎪

 
M = A − 8

2.285Δω

β

δ

δ

TABLE	
  7.2	
  	
  COMPARISON	
  OF	
  COMMONLY	
  USED	
  WINDOWS	
  	
  (shown	
  again)	
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Note:	
  	
  If	
  one	
  of	
  the	
  non-­‐Kaiser	
  window	
  types	
  is	
  used,	
  the	
  right-­‐hand	
  column	
  in	
  the	
  table	
  also	
  
provides	
  a	
  beGer	
  es;mate	
  of	
  the	
  transi;on	
  width	
  of	
  the	
  resul;ng	
  filter,	
  than	
  does	
  the	
  
approxima;on	
  to	
  the	
  main	
  lobe	
  width	
  in	
  column	
  three.	
  
	
  
Op?mum	
  Approxima?on	
  of	
  FIR	
  Filters	
  (Sec?on	
  7.7)	
  
Start	
  with	
  a	
  Type	
  I	
  non-­‐causal,	
  zero-­‐phase	
  FIR	
  filter	
  with	
  unit	
  sample	
  response	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  	
  	
  	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  
The	
  corresponding	
  frequency	
  response	
  is	
  
	
  
	
  
Because	
  of	
  the	
  symmetry	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  wriGen	
  as	
  
	
  
	
  
which	
  is	
  a	
  real,	
  even,	
  and	
  periodic	
  func;on	
  of	
  	
  	
  	
  .	
  	
  	
  
	
  
We	
  can	
  now	
  make	
  the	
  filter	
  causal	
  by	
  delaying	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  L	
  samples.	
  The	
  delayed	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  now	
  extends	
  
from	
  n	
  =	
  0	
  to	
  n	
  =	
  2L.	
  	
  If	
  we	
  let	
  M	
  =	
  2L,	
  then	
  the	
  h(n)	
  for	
  the	
  causal	
  filter	
  can	
  be	
  represented	
  as	
  
	
  
	
  
The	
  corresponding	
  frequency	
  response	
  of	
  the	
  causal	
  version	
  of	
  the	
  filter	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  

  he(n) = he(−n)  −L ≤ n ≤ L

Ae(ejω) = he(n)
k=−L

L
∑ e− jωn.

 he(n)  Ae(ejω )

Ae(e
jω) = he(0) + 2he(n)

n=1

L

∑ cos(ωn).

ω

 he(n)  he(n)

h(n) = he(n − M
2).

H(ejω) = Ae(e
jω)e− jωM/2.

(equa;on	
  7.88)	
  

(equa;on	
  7.91)	
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Design	
  objec;ves	
  for	
  a	
  digital	
  filter	
  can	
  be	
  expressed	
  in	
  terms	
  of	
  a	
  "tolerance	
  scheme"	
  such	
  as	
  
the	
  one	
  shown	
  below.	
  	
  For	
  the	
  low-­‐pass	
  filter	
  of	
  this	
  figure,	
  the	
  parameters	
  are	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  ,	
  
and	
  L.	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
General	
  approaches	
  to	
  find	
  the	
  desired	
  filter:	
  	
  Fix	
  some	
  of	
  the	
  parameters,	
  then	
  use	
  an	
  itera;ve	
  
computer	
  solu;on	
  to	
  obtain	
  the	
  op;mum	
  adjustment	
  of	
  the	
  others.	
  
	
  	
  
Method	
  of	
  Hermann,	
  Schussler,	
  and	
  HofsteGer:	
  	
  Fix	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  ,	
  and	
  L;	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  allowed	
  to	
  
vary.	
  
	
  

 ωp  ωs  δ1  δ2

 δ1  δ2  ωp  ωs

Figure	
  7.40	
  	
  Tolerance	
  scheme	
  and	
  
Ideal	
  response	
  for	
  lowpass	
  filter.	
  

11	
  



Method	
  of	
  Parks,	
  McClellan,	
  and	
  Rabiner:	
  	
  Fix	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  ,	
  L	
  ,	
  and	
  the	
  ra;o	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ;	
  	
  	
  	
  	
  	
  	
  	
  	
  (or	
  	
  	
  	
  	
  	
  	
  )	
  are	
  
allowed	
  to	
  vary.	
  	
  This	
  method	
  has	
  become	
  the	
  dominant	
  approach,	
  and	
  is	
  called	
  the	
  "Parks-­‐
McClellan	
  algorithm."	
  	
  (This	
  is	
  the	
  "firpm"	
  algorithm	
  of	
  Matlab.)	
  
	
  
The	
  Parks-­‐McClellan	
  algorithm	
  is	
  based	
  on	
  reformula;ng	
  the	
  filter	
  design	
  problem	
  as	
  a	
  problem	
  
of	
  polynomial	
  approxima;on.	
  	
  
	
  It	
  begins	
  by	
  expressing	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  terms	
  in	
  the	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  a	
  sum	
  of	
  powers	
  
of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  using	
  the	
  fact	
  that	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  n-­‐th	
  order	
  Chebyshev	
  polynomial.	
  
	
  
This	
  is	
  the	
  same	
  Chebyshev	
  polynomial	
  encountered	
  in	
  the	
  design	
  of	
  Chebyshev	
  IIR	
  filters,	
  and	
  is	
  
defined	
  recursively	
  using	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  seeds:	
  
	
  
	
  
	
  
	
  
Therefore,	
  
	
  
	
  
	
  
	
  
	
  

 ωp  ωs   δ1 / δ2  δ1

  cos(ωn)  Ae(ejω )
 cos(ω)

 cos(ωn) = Tn(cosω)

 Tn(x)

  T0(x) =1   T1(x) = x

T0(x) =1

 cos(3ω) = 4cos3ω − 3cosω
cos(4ω) = 8cos4 ω − 8cos2ω +1

δ2

cos(2ω) = 2cos2ω −1

  Tn(x) = 2xTn−1(x)− Tn−2(x) = 2x2 −1
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Using	
  the	
  above	
  polynomial	
  representa;on	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  we	
  can	
  rewrite	
  the	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
in	
  the	
  following	
  form:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  7.93)	
  
	
  
where	
  the	
  	
  	
  	
  	
  	
  are	
  related	
  to	
  the	
  unit	
  sample	
  response	
  of	
  the	
  filter.	
  
To	
  emphasize	
  that	
  we	
  are	
  selng	
  up	
  a	
  polynomial	
  approxima;on	
  problem,	
  note	
  that	
  the	
  above	
  
equa;on	
  can	
  be	
  wriGen	
  as	
  
	
  
where	
  
	
  
	
  
The	
  Parks-­‐McClellan	
  algorithm	
  itera;vely	
  adjusts	
  an	
  approxima;on	
  func;on	
  over	
  a	
  disjoint	
  sets	
  
of	
  frequencies.	
  	
  
	
  The	
  approxima;on	
  process	
  is	
  based	
  on	
  a	
  target	
  filter	
  response	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  a	
  weigh;ng	
  
func;on	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
The	
  target	
  filter	
  response	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  a	
  weigh;ng	
  func;on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  defined	
  only	
  over	
  disjoint	
  
frequency	
  regions.	
  	
  For	
  a	
  low-­‐pass	
  filter,	
  these	
  intervals	
  are	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  
	
  	
  	
  	
  
	
  
	
  
	
  
	
  

  cos(ωn)
 Ae(ejω )

 
Ae(e

jω ) = ak
k=0

L

∑ (cosω)k

 ak

 
Ae(ejω) = P(x)

x=cosω

P(x) = ak
k=0

L

∑ xk.

 Hd(e
jω )

  W(ω)

 E(ω) = W(ω)[Hd(e
jω ) − Ae(e

jω )].

 Hd(e
jω )   W(ω)

 0 ≤ ω ≤ ωp ωs ≤ ω ≤ π.
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The	
  approxima;on	
  func;on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  not	
  constrained	
  in	
  the	
  transi;on	
  frequency	
  band	
  between	
  	
  	
  	
  	
  	
  	
  	
  	
  
and	
  	
  	
  	
  	
  	
  	
  (and	
  this	
  can	
  cause	
  major	
  problems	
  in	
  mul;band	
  filters).	
  	
  
	
  
The	
  Parks-­‐McClellan	
  algorithm	
  finds	
  the	
  approxima;on	
  func;on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  which	
  minimizes	
  the	
  
maximum	
  magnitude	
  of	
  the	
  weighted	
  approxima;on	
  error	
  	
  	
  	
  	
  	
  	
  	
  	
  over	
  all	
  of	
  the	
  disjoint	
  frequency	
  
regions	
  included	
  in	
  the	
  design	
  specifica;ons.	
  
	
  
The	
  goal	
  of	
  the	
  Parks-­‐McClellan	
  algorithm	
  can	
  also	
  be	
  described	
  as	
  the	
  following	
  minimiza;on	
  
problem:	
  
	
  
	
  
For	
  the	
  case	
  of	
  a	
  low-­‐pass	
  filter,	
  F	
  consists	
  of	
  the	
  closed	
  subsets	
  of	
  frequencies:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
In	
  other	
  words,	
  the	
  algorithm	
  tries	
  to	
  find	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  sequence	
  that	
  minimizes	
  the	
  maximum	
  
weighted	
  approxima;on	
  error	
  over	
  the	
  specified	
  frequency	
  intervals.	
  
	
  
If	
  we	
  use	
  a	
  weigh;ng	
  func;on	
  of	
  	
  
	
  
	
  
	
  

 Ae(ejω )  ωp

 ωs

 Ae(ejω )
  E(ω)

min
{h

e
(n):0≤n≤L}

(max
ω∈F

| E(ω) |).

 0 ≤ ω ≤ ωp  ωs ≤ ω ≤ π

 he(n)

 

W(ω) =
1
K  ,      0 ≤ ω ≤ ωp

1,        ωs  ≤ ω ≤ π

⎧

⎨
⎪

⎩
⎪

then	
  the	
  maximum	
  error	
  in	
  the	
  passband	
  will	
  be	
  K	
  ;mes	
  the	
  maximum	
  error	
  in	
  the	
  
stopband.	
  	
  That	
  is,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
   δ1 = Kδ2
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The	
  Parks-­‐McClellan	
  algorithm	
  uses	
  an	
  itera;ve	
  approach	
  which	
  is	
  based	
  on	
  the	
  following	
  
theorem:	
  
Alterna?on	
  Theorem	
  
Let	
  	
  	
  	
  	
  	
  denote	
  the	
  closed	
  subset	
  consis;ng	
  of	
  a	
  disjoint	
  union	
  of	
  closed	
  subsets	
  of	
  the	
  real	
  axis	
  x.	
  	
  
Also	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  be	
  an	
  r-­‐th	
  order	
  polynomial	
  represented	
  as	
  
	
  
	
  
Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  denote	
  a	
  given	
  desired	
  func;on	
  of	
  x	
  that	
  is	
  con;nuous	
  on	
  	
  	
  	
  	
  ;	
  	
  
Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  be	
  a	
  posi;ve	
  func;on	
  which	
  is	
  also	
  con;nuous	
  on	
  	
  	
  	
  	
  .	
  	
  
Define	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  weighted	
  error,	
  as	
  
	
  
	
  
Also	
  define	
  the	
  maximum	
  error	
  as	
  
	
  
	
  
A	
  necessary	
  and	
  sufficient	
  condi;on	
  that	
  P(x)	
  be	
  the	
  unique	
  rth-­‐order	
  polynomial	
  that	
  minimizes	
  
	
  	
  	
  	
  	
  	
  is	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  exhibit	
  at	
  least	
  (r+2)	
  alterna;ons:	
  i.e.,	
  	
  there	
  must	
  exist	
  at	
  least	
  	
  (r+2)	
  values	
  xi	
  in	
  	
  	
  
such	
  that	
  	
  x1	
  <	
  x2	
  <	
  	
  .	
  .	
  .	
  <	
  xr+2	
  	
  and	
  such	
  that	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  i	
  =	
  1,	
  2,	
  .	
  .	
  ..	
  ,	
  (r+1).	
  	
  
	
  
	
  

 Fp

 P(x)

P(x) = ak
k=0

r

∑ xk.

 DP(x)
 Fp

 WP(x)
 Fp

 EP(x)

EP(x) = WP(x)[DP(x) − P(x)].

E = max
x∈F

P

| EP(x) | .

 Fp EP(x)

 EP(xi) = −EP(xi+1) = ± E

 E
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Example:	
  	
  (Alterna;ons	
  in	
  Polynomial	
  Approxima;on)	
  	
  (Example	
  7.11)	
  
	
  
Consider	
  the	
  use	
  of	
  a	
  	
  5-­‐th	
  order	
  P(x)	
  to	
  approximate	
  unity	
  and	
  zero,	
  respec;vely,	
  over	
  the	
  
following	
  disjoint	
  closed	
  subsets:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  
	
  
Assume	
  that	
  an	
  equal	
  weigh;ng	
  of	
  1	
  is	
  assigned	
  to	
  each	
  of	
  the	
  above	
  subsets	
  of	
  x	
  values.	
  
	
  
According	
  to	
  the	
  Alterna;on	
  Theorem,	
  the	
  unique	
  best	
  approxima;on	
  of	
  a	
  5th	
  order	
  polynomial	
  
must	
  exhibit	
  at	
  least	
  7	
  alterna;ons	
  over	
  the	
  closed	
  subsets.	
  	
  	
  
	
  
Based	
  on	
  the	
  above	
  informa;on,	
  consider	
  whether	
  any	
  of	
  the	
  candidate	
  polynomials	
  (shown	
  on	
  
the	
  next	
  slide)	
  is	
  the	
  unique	
  best	
  approxima;on:	
  	
  	
  
	
  
	
  
	
  

  −1≤ x ≤ −0.1 0.1≤ x ≤ 1.
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From	
  the	
  above	
  figure:	
  	
  
	
  
P1(x)	
  has	
  only	
  5	
  alterna;ons.	
  
P2(x)	
  also	
  has	
  only	
  5	
  alterna;ons.	
  
P3(x)	
  has	
  8	
  alterna;ons.	
  	
  
	
  	
  
Therefore,	
  P3(x)	
  is	
  the	
  unique	
  best	
  approxima;on	
  to	
  the	
  two	
  target	
  values	
  for	
  the	
  two	
  specified	
  
closed	
  subsets	
  of	
  x.	
  	
  	
  
	
  

Figure	
  7.43	
  	
  5th-­‐order	
  polynomials	
  for	
  Example	
  7.8	
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Op;mal	
  Type	
  I	
  Lowpass	
  Filters	
  
As	
  already	
  shown,	
  the	
  frequency	
  response	
  for	
  a	
  causal	
  Type	
  I	
  filter	
  has	
  the	
  form:	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  a	
  real,	
  even,	
  and	
  periodic	
  func;on	
  and	
  where	
  M,	
  the	
  order	
  of	
  the	
  filter,	
  is	
  even.	
  
	
  
We	
  have	
  also	
  seen	
  that	
  for	
  a	
  Type	
  I	
  filter,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  wriGen	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  	
  L	
  	
  =	
  M/2	
  
	
  
which	
  can	
  also	
  be	
  expressed	
  as	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  
	
  
Note	
  that	
  the	
  Alterna;on	
  Theorem	
  relates	
  directly	
  to	
  	
  	
  	
  	
  	
  	
  	
  ,	
  instead	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
As	
  	
  	
  	
  	
  	
  	
  	
  increases	
  from	
  0	
  to	
  π	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  decreases	
  monotonically	
  from	
  1	
  to	
  -­‐1.	
  	
  
	
  The	
  closed	
  subsets	
  of	
  	
  	
  	
  	
  	
  values	
  that	
  we	
  would	
  use	
  to	
  specify	
  the	
  design	
  requirements	
  for	
  a	
  low-­‐
pass	
  filter,	
  and	
  how	
  	
  they	
  correspond	
  to	
  x	
  values,	
  are	
  shown	
  below:	
  
	
  
	
  
	
  
The	
  frequency	
  response	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  an	
  op;mum	
  Type	
  I	
  lowpass	
  filter	
  is	
  on	
  the	
  next	
  slide,	
  
along	
  with	
  a	
  plot	
  of	
  the	
  corresponding	
  polynomial	
  func;on	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
	
  
	
  

 H(ejω ) = Ae(e
jω )e− jωM/2

 Ae(ejω )

 Ae(ejω )

 
Ae(e

jω ) = ak(cosω)k

k=0

L

∑

 
Ae(e

jω ) = P(x)
x=cosω

P(x) = ak
k=0

L

∑ xk.

  P(x)
 Ae(ejω )

 0 ≤ ω ≤ ωp    <------>    cosωp ≤ x ≤1

ωs ≤ ω ≤ π    <------>   −1≤ x ≤ cosωs.

 Ae(ejω )

  P(x)

ω

ω

cosω
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Figure	
  7.44	
  

Figure	
  7.45	
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More	
  on	
  Alterna?ons	
  for	
  FIR	
  filters	
  
For	
  a	
  low	
  pass	
  FIR	
  filter	
  having	
  order	
  =	
  M	
  =	
  2L,	
  the	
  maximum	
  number	
  of	
  alterna;ons,	
  over	
  the	
  
range	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  L	
  +	
  3.	
  	
  	
  
	
  
Show	
  this:	
  	
  Over	
  the	
  frequency	
  range	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  alterna;ons	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  correspond	
  to	
  altera;ons	
  
of	
  the	
  L-­‐th	
  order	
  polynomial	
  	
  	
  	
  	
  	
  	
  	
  over	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  as	
  shown	
  in	
  the	
  previous	
  figure.	
  	
  	
  
	
  
An	
  L-­‐th	
  order	
  polynomial	
  can	
  have	
  at	
  most	
  L-­‐1	
  extrema.	
  	
  Four	
  addi;onal	
  alterna;ons	
  can	
  occur	
  at	
  
the	
  four	
  band	
  edges	
  
	
  
(This	
  corresponds	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ).	
  	
  Therefore,	
  the	
  maximum	
  possible	
  number	
  of	
  alterna;ons	
  is	
  
L	
  +3.	
  	
  A	
  filter	
  with	
  L	
  +	
  3	
  alterna;ons	
  is	
  called	
  the	
  "extra	
  ripple"	
  case.	
  	
  	
  
	
  
It	
  is	
  interes;ng	
  to	
  note	
  that	
  the	
  approxima;ng	
  polynomial	
  func;on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  will	
  always	
  have	
  a	
  
slope	
  of	
  zero	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  even	
  though	
  these	
  may	
  not	
  be	
  "alterna;ons."	
  	
  	
  
We	
  can	
  show	
  this	
  by	
  taking	
  the	
  deriva;ve	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  shown	
  below:	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  7.91)	
  
	
  
Because	
  of	
  the	
  	
  mul;plier,	
  the	
  deriva;ve	
  is	
  0	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  Note	
  in	
  the	
  figure	
  that	
  
alterna;ons	
  always	
  occur	
  at	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  ,	
  as	
  discussed	
  later	
  in	
  this	
  unit.	
  
	
  
	
  

0 ≤ ω ≤ π

 0 ≤ ω ≤ π  H(ejω )
  P(x)  −1≤ x ≤ 1

x = −1, cos ωs,  cos ωp,  and 1.

 ω = π,ωs,ωp,0

  P(cosω)

 ω = 0 ω = π

  P(cosω)

 
P(cosω) = ak(cosω)k

k=0

L

∑
dP(cosω)

dω
= − sinω kak(cosω)

k−1

k=0

L

∑
⎛

⎝⎜
⎞

⎠⎟

 ω = 0 ω = π

 ωp  ωs

 
= − sinω (k +1)ak(cosω)k

k=0

L−1

∑
⎛

⎝⎜
⎞

⎠⎟
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Figure	
  7.46	
  

(d)	
  L+2	
  alterna;	
  ons	
  	
  (extremum	
  at	
  
both	
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Referring	
  to	
  the	
  previous	
  figure,	
  if	
  there	
  is	
  not	
  an	
  alterna;on	
  at	
  	
  	
  	
  	
  	
  	
  	
  ,	
  then	
  there	
  also	
  cannot	
  be	
  
an	
  alterna;on	
  at	
  	
  	
  	
  	
  	
  	
  ,	
  since	
  by	
  defini;on,	
  alterna;ons	
  have	
  to	
  represent	
  alterna;ng	
  "error-­‐high"	
  
condi;on	
  and	
  "error-­‐low"	
  condi;on.	
  	
  
	
  
If	
  neither	
  	
  	
  	
  	
  	
  	
  nor	
  	
  	
  	
  	
  	
  	
  is	
  an	
  alterna;on,	
  then	
  there	
  are	
  not	
  enough	
  other	
  ways	
  to	
  have	
  the	
  L	
  +2	
  
needed	
  for	
  an	
  op;mum	
  filters.	
  	
  Therefore,	
  the	
  op;mum	
  low-­‐pass	
  filter	
  must	
  have	
  alterna;ons	
  at	
  
both	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
Op;mum	
  Type	
  II	
  Low	
  Pass	
  Filters	
  
The	
  unit	
  sample	
  response	
  for	
  a	
  causal	
  Type	
  II	
  filter	
  whose	
  h(n)	
  extends	
  over	
  0	
  ≤	
  n	
  ≤	
  M	
  sa;sfies	
  
the	
  following	
  symmetry	
  condi;on,	
  where	
  M	
  is	
  odd:	
  
	
  
	
  
Therefore,	
  the	
  frequency	
  response	
  can	
  be	
  wriGen	
  as	
  
	
  
	
  

 ωp

 ωs

 ωp

 ωs

h(n) = h(M − n).

 
H(ejω) = h(k)e− jωn

n=0

M

∑ = h(n)[e− jωn

n=0

M−1
2
∑ + e− jω(M−n)]

 
= e− jωM/2 h(n)[e− jωn

n=0

M−1
2
∑ ejωM/2 + ejωM/2e− jω(M−n)]

 
= e− jωM/2 h(n)[

n=0

M−1
2
∑ ejω(M

2 −n)
+ e− jω(M

2 −n)]

 
= e− jωM/2 2h(n)cos ω M

2
− n⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

n=0

M−1
2

∑

 ωp

 ωs

(equa;on	
  7.106)	
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Now	
  let	
  	
  
	
  
When	
  	
  
	
  
When	
  	
  
	
  
We	
  can	
  now	
  write	
  the	
  above	
  summa;on	
  for	
  the	
  frequency	
  response	
  as	
  
	
  
	
  
	
  
	
  
	
  
If	
  we	
  also	
  define	
  b(k)	
  as	
  
	
  
	
  
the	
  above	
  expression	
  for	
  the	
  frequency	
  response	
  can	
  be	
  wriGen	
  as	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  7.107)	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  

k = M +1
2 − n.

n = 0,  k = M +1
2 .

n = M −1
2 ,    k = M +1

2 − M −1
2 = 1.

 
H(ejω ) = e− jωM/2 2h M +1

2
− k⎛

⎝⎜
⎞

⎠⎟
cos ω M

2
− M +1

2
− k⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟k=1

M+1
2

∑

= e− jωM/2 2h M +1
2

− k⎛

⎝⎜
⎞

⎠⎟
cos ω k − 1

2
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

k=1

M+1
2

∑ .

 
b(k) = 2h(M +1

2 − k)

H(ejω) = e− jωM/2 b k( )cos ω k − 1
2

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

k=1

M+1
2

∑ .
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Using	
  the	
  trig	
  iden;ty:	
  	
  	
  	
  
and	
  a	
  lot	
  of	
  manipula;on,	
  the	
  above	
  can	
  be	
  wriGen	
  as	
  
	
  
	
  
	
  
As	
  we	
  have	
  already	
  seen,	
  the	
  above	
  summa;on	
  can	
  be	
  expressed	
  as	
  a	
  trigonometric	
  polynomial	
  	
  
so	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  wriGen	
  in	
  the	
  form:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  7.109a)	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  . 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  7.109b)	
  
	
  
Therefore,	
  in	
  selng	
  up	
  a	
  target	
  response	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  we	
  must	
  take	
  into	
  account	
  the	
  built-­‐in	
  	
  
term	
  for	
  Type	
  II	
  filters.	
  	
  	
  
	
  
For	
  a	
  lowpass	
  filter,	
  the	
  target	
  for	
  	
  should	
  be	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  7.110)	
  	
  
	
  
	
  
If	
  we	
  want	
  to	
  specify	
  a	
  ra;o	
  K	
  of	
  passband	
  to	
  stopband	
  ripple,	
  the	
  weigh;ng	
  func;on	
  for	
  Type	
  II	
  
filters	
  should	
  also	
  take	
  into	
  account	
  the	
  built	
  in	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  term,	
  and	
  should	
  be	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa;on	
  7.111)	
  	
  
	
  
	
  
	
  
	
  
	
  

 
cos(A)cos(B) = 1

2[cos(A + B) + cos(A − B)]

  
H(ejω ) = e− jωM/2 cos(ω / 2) b(k)cos ωk( )

k=0

M−1
2

∑ .

  P(cosω)

 H(ejω )

 H(ejω ) = e− jωM/2 cos(ω / 2)P(cosω)

  P(cosω)   cos(ω / 2)

 
Hd(e

jω ) = DP(cosω) = 1
cos(ω / 2)

,    for 0 ≤ ω ≤ωp

  cos(ω / 2)

= 0,       for ωs  ≤ ω ≤ π.

 
P(cosω) = ak

k=0

L

∑ (cosω)k

 
W(ω) = WP(cosω) = cos(ω / 2)

K
,       for 0 ≤ ω ≤ωp

 = cos(ω / 2),       for ωs  ≤ ω ≤ π
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  (repeat	
  of	
  equa;on	
  7.111)	
  	
  
	
  
	
  
	
  
To	
  see	
  this,	
  we	
  can	
  express	
  the	
  term	
  to	
  be	
  minimized	
  in	
  the	
  Alterna;on	
  Theorem,	
  using	
  the	
  
above	
  expressions	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  Type	
  II	
  filters,	
  as	
  follows:	
  
	
  
	
  
	
  
	
  
	
  
For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  corresponding	
  expressions	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
	
  
	
  
For	
  Type	
  III	
  and	
  Type	
  IV	
  filters,	
  we	
  must	
  also	
  take	
  into	
  account	
  built-­‐in	
  frequency	
  dependent	
  
func;ons	
  when	
  specifying	
  a	
  target	
  response	
  for	
  ,	
  as	
  summarized	
  below:	
  
Type	
  III	
  	
  filters	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Type	
  IV	
  	
  filters	
  
	
  
	
  
	
  

 
W(ω) = WP(cosω) = cos(ω / 2)

K
,       for 0 ≤ ω ≤ωp

 = cos(ω / 2),       for ωs  ≤ ω ≤ π

 DP(cosω)  WP(cosω)

 EP(cosω) = WP(cosω)[DP(cosω) − P(cosω)]

 
= cos(ω / 2)

K
1

cos(ω / 2)
− P(cosω)⎡

⎣
⎢

⎤

⎦
⎥ ,       for 0 ≤ ω ≤ωp

 
= 1

K
1− cos(ω / 2)P(cosω)⎡⎣ ⎤⎦ ,      for 0 ≤ ω ≤ωp.

 ωs  ≤ ω ≤ π  EP(cosω)

EP(cosω) = cos(ω / 2) 0 − P(cosω)⎡⎣ ⎤⎦ = − cos(ω / 2)P(cosω).

 
H(ejω ) = e− jωM/2 sin(ω) ak(cosω)k

k=0

M
2 −1

∑
 
H(ejω ) = e− jωM/2 sin(ω / 2) ak(cosω)k

k=0

M−1
2

∑
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