ECE 8440 Unit 16 1
Chapter 7 - "Filter Design Techniques"

Review: Methods of Designing IIR Digital Filters

¢ Bilinear Transformation Method

- Good for transforming analog filters with flat pass-bands, including low-pass, high-pass,
band-pass, and band-reject.

- Butterworth, Chebyshev, Elliptic filter types

e Impulse Invariance
- Good for transforming analog filters which have band-limited response
- Butterworth, Chebyshev, Elliptic filter types

e Minimum Mean-Squared Method
- Computer method for designing IIR filters to approximate an arbitrary frequency

(Matlab's "yulewalk" routine can design IIR filters to approximate a piece-wise linear frequency
response function)

e Other methods



Methods of Designing FIR Digital Filters
e Window Method
e Designing Optimum FIR filters Using Matlab's "firpm" algorithm

Review of Window Method
1. Find h(n) associated with desired frequency response function. (Usually get infinitely

long h(n).)
2. Multiply h(n) from step 1 by finite duration window function to obtain FIR filter.

Example of Window Method
To obtain a causal FIR low-pass filter or order M, we typically start with
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The unit sample response for the FIR approximation to this filter is obtained by multiplying h,(n)

by an appropriate window function:

h(n) = hlp(n)w(n)

where w(n)is 0 outside the range 0<n<M.

Since h(n)is symmetric around its mid-point of M and since all candidate window functions are
symmetric, the resulting FIR filter with have generalized linear phase and will be either Type | or

Type |l, depending on whether M is even or odd.

A plot of several commonly used windows is shown below:
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Figure 7.29 Commonly used windows.
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The Fourier Transforms of the above windows are shown in the figure below:
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Freguency Domain Effects of Windowing

Multiplying h,(n) by w(n) corresponds to convolution of the corresponding frequency domain
functions:

H(e®) = o [ H, (e#)W(el>)de

The DTFT of a typical window function and its effect in the above integral are shown below:

Related to Figure 7.31
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For any window function w(n), the width of the main lobe of W(e*) can be reduced by extending

the length of the window.

On the other hand, the size of the peak side-lobe of W(e") is independent of the window length.

The following Table summarizes the features of interest in several popular window functions.

TABLE 7.2 COMPARISON OF COMMONLY USED WINDOWS

Peak
Peak Approximation
_ Side-Lobe  Approximate Error,

Type of Amplitude Width of 20logy 8
Window (Relative) Main Lobe (dB)
Rectangular -13 4w /(M +1) -21
Bartlett —25 8m/M -25
Hanning -31 8rn/M —44
Hamming —41 8m/M —53
Blackman —57 12n/M —74

Selection of window type and length

1. Select window type that provides sufficiently small ripple 8, using above table.

2. For selected window type, determine window length needed to provide
sufficiently narrow transition region, again using above table.



High-pass filters, band-pass filters, and multi-band filters can be designed using low-pass filters as

building blocks. For example, for the desired response function of the type shown below

| Hop(e7)1 N
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: Figure 7.37 Ideal frequency response
G | { for multiband filter
W, w)y w3 T W

We could obtain the unit sample response h_ (n) for the multiband filter as follows:

N, sinw, (n- hzll) M
h (n)=>(G -G_,) M. > N#*35  (equation7.81)
k= n(n-73)

Kaiser Window

The "Kaiser window" is actually a family of window functions with a parameter B which can be
adjusted to ensure that both design conditions (small enough ripple, narrow enough transition
region) are met. (See figure below.)
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Steps in Designing FIR Filters Using the Window Method with Kaiser Windows 9

1. For a given value of § , let A = -20logd . (J is the peak approximation error)
2. Set the parameter B as follows:

0.1102(A -8.7), A>50
B=:0.5842(A - 21)°4 +0.07886(A - 21), 21<A<50 (equation. 7.75)
0.0, A<21

3. Select the first approximation to the required filter length M using
A-8 :
=_1"° equation 7.76
M 2.285Aw (eq )

The table below, which is an extended version of the table previously provided, shows the B

values needed for Kaiser window in order to achieve the size of § that is fixed for each of the
other window types.

The right-hand column in the table provides the transition width for the Kaiser window for the
corresponding value of & (and therefore of A), as function of window length M.

TABLE 7.2 COMPARISON OF COMMONLY USED WINDOWS (shown again)

Peak Transition
Peak Approximation ~ Equivalent Width
» Side-Lobe  Approximate Error, Kaiser of Equivalent
Type of Amplitude Width of 20log;y 6 Window, Kaiser
Window (Relative) Main Lobe (dB) B Window
Rectangular -13 dm/(M+1) =21 0 1.81n/M
Bartlett -25 8n/M —25 1.33 23Tn/M
Hanning -31 8m/M —44 3.86 5.01n/M
Hamming —41 8w /M —53 4.86 627 /M

Blackman —57 127/ M —74 7.04 9197/ M




Note: If one of the non-Kaiser window types is used, the right-hand column in the table also 10
provides a better estimate of the transition width of the resulting filter, than does the
approximation to the main lobe width in column three.

Optimum Approximation of FIR Filters (Section 7.7)

Start with a Type | non-causal, zero-phase FIR filter with unit sample response
h.(n)=h_(-n) for -L<n<L
The corresponding frequency response is

L
A (e”)= Y h_(n)e ™. .
IZ'L (equation 7.88)

Because of the symmetry of he(n), A_(e*) can be written as
L

A (e*)=h_(0)+ Y, 2h_(n)cos(mn).
n=1

which is a real, even, and periodic function of ®.

We can now make the filter causal by delaying h_(n) by L samples. The delayed h_(n) now extends
fromn=0ton=2L. If welet M = 2L, then the h(n) for the causal filter can be represented as

h(n) = h,(n - 5.

The corresponding frequency response of the causal version of the filter is

H(e) = A_(e®)e "2, (equation 7.91)
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Design objectives for a digital filter can be expressed in terms of a "tolerance scheme" such as
the one shown below. For the low-pass filter of this figure, the parameters areo, , o_ , §,, 8,

and L.

Ae(e)

Figure 7.40 Tolerance scheme and
Ideal response for lowpass filter.

General approaches to find the desired filter: Fix some of the parameters, then use an iterative
computer solution to obtain the optimum adjustment of the others.

Method of Hermann, Schussler, and Hofstetter: Fix §.,5,,andL; ®, and o, are allowed to
vary.




Method of Parks, McClellan, and Rabiner: Fix COp,(DS, L, and the ratio of §,/3,; 61 (or 82 ) are 12
allowed to vary. This method has become the dominant approach, and is called the "Parks-
McClellan algorithm." (This is the "firpm" algorithm of Matlab.)

The Parks-McClellan algorithm is based on reformulating the filter design problem as a problem
of polynomial approximation.

It begins by expressing the cos(on) terms in the expression for A_(e**) as a sum of powers

of cos(w)using the fact that

cos(on) =T (cosw)

where T (x) is the n-th order Chebyshev polynomial.

This is the same Chebyshev polynomial encountered in the design of Chebyshev IIR filters, and is
defined recursively using T (x) =1and T.(x) = x as seeds:

To(x) =1
T,(x) = x

T (x)=2xT_.(x)-T ,(x)=2x*-1
Therefore,

cos(2w) =2cos?m -1
cos(3w) = 4cos’® - 3cosm
cos(4w) = 8cos* m - 8cos? w + 1



Using the above polynomial representation of cos(wn) , we can rewrite the expression for A_(e*) 13
in the following form:

L
A (e)=Y a (cosm) (equation 7.93)
k=0

where the a, are related to the unit sample response of the filter.

To emphasize that we are setting up a polynomial approximation problem, note that the above
equation can be written as

A_(e®)=P(x)
where

L
P(x) =Y ax"
k=0

X=C0sS®

The Parks-McClellan algorithm iteratively adjusts an approximation function over a disjoint sets
of frequencies.

The approximation process is based on a target filter response H_ (e/) and a weighting
function w(e):

E(0) = W(@)[H,(e*) - A (e*)].

The target filter response H (e*) and a weighting function y) are defined only over disjoint
frequency regions. For a low-pass filter, these intervals are

Os(os(npand o, <O <.



14
The approximation function A_(e’*) is not constrained in the transition frequency band between ®
and ®_ (and this can cause major problems in multiband filters).

The Parks-McClellan algorithm finds the approximation function A_(e*) which minimizes the

maximum magnitude of the weighted approximation error E(w) over all of the disjoint frequency
regions included in the design specifications.

The goal of the Parks-McClellan algorithm can also be described as the following minimization
problem:

min (max |E(w) I).
{he(n):OsnsL}( nax | E(w)1)

For the case of a low-pass filter, F consists of the closed subsets of frequencies:
OSwapand O <O<T.

In other words, the algorithm tries to find the h_(n) sequence that minimizes the maximum
weighted approximation error over the specified frequency intervals.

1 O<w=<
If we use a weighting function of W(e@)={K ’ =0 =

1, () JS

then the maximum error in the passband will be K times the maximum error in the
stopband. Thatis, § =k, .



The Parks-McClellan algorithm uses an iterative approach which is based on the following 15
theorem:

Alternation Theorem

Let Fp denote the closed subset consisting of a disjoint union of closed subsets of the real axis x.
Also let P(x) be an r-th order polynomial represented as

P(x) =) ax~
k=0

Let D,(x)denote a given desired function of x that is continuous on Fp ;
Let W, (X) be a positive function which is also continuous on F.
Define E,(x), the weighted error, as

E.(x) = W,(X)[D,(x) —P(x)].
Also define the maximum error as

HEH = rQGaF:( IE,(x)1.

A necessary and sufficient condition that P(x) be the unique rth-order polynomial that minimizes
HEH is that E;(x) exhibit at least (r+2) alternations: i.e., there must exist at least (r+2) values x; in F

such that x; <x,< ...<x,, and such that

E.(x,) = -E,(x,,) = iHEH fori=1,2,....,(r+l).
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Example: (Alternations in Polynomial Approximation) (Example 7.11)

Consider the use of a 5-th order P(x) to approximate unity and zero, respectively, over the
following disjoint closed subsets:

1<x<-0.1 and 0.1<x<1.

Assume that an equal weighting of 1 is assigned to each of the above subsets of x values.

According to the Alternation Theorem, the unique best approximation of a 5th order polynomial
must exhibit at least 7 alternations over the closed subsets.

Based on the above information, consider whether any of the candidate polynomials (shown on
the next slide) is the unique best approximation:



Py(x) 17

Figure 7.43 5th-order polynomials for Example 7.8

P3(x) has eight alternations; all points of zero slope, x = —1,x =—-0.1,x =0.1
and x = 1. Since eight alternations satisfies the alternation theorem, which specifies a

mininmm of seven, P3(x) is the unique optimal fifth-order polynomial approximation
for this region.

From the above figure:

P,(x) has only 5 alternations.
P,(x) also has only 5 alternations.
P5(x) has 8 alternations.

Therefore, P4(x) is the unique best approximation to the two target values for the two specified
closed subsets of x.



Optimal Type | Lowpass Filters 18

As already shown, the frequency response for a causal Type | filter has the form:

H(ejm) = Ae(ejm)e—ij/Z
where Ae(ej"’) is a real, even, and periodic function and where M, the order of the filter, is even.

We have all_so seen that for a Type | filter, Ae(ej"’)can be written as
A (e”)=Y a (cosw) where L =M/2
k=0

which can also be expressed as )
Ae(ej“’) =P(x) where P(x) = Zakx".
k=0

X=COS ®

Note that the Alternation Theorem relates directly toP(x), instead of A _(e) .
As o increases from0Otom, cosw decreases monotonically from 1 to -1.

The closed subsets of ® values that we would use to specify the design requirements for a low-
pass filter, and how they correspond to x values, are shown below:

OSmSwp <--—-- > coso)p3xs1

OSOST < > —1SXScosa)s.

The frequency response for A_(e*) for an optimum Type | lowpass filter is on the next slide,
along with a plot of the corresponding polynomial function p(x).
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Figure 7.44 Typical example of a lowpass filter approximation that is optimal
according to the alternation theorem for L =7.

Wp(x)

1 —

s
1 | |
| |
| | | |
| | | |

-1 Coswy COsw, 1 x=cosw A 1 x=cosw
' 2 cos wy COS w, ) 1
(®) (©

Figure 7.45 Equivalent polynomial approximation functions as a function of x = ¢os .

P (a) Appreximating polynomial. (b) Weighting function. (c) Approximation error.



More on Alternations for FIR filters 20
For a low pass FIR filter having order = M = 2L, the maximum number of alternations, over the
range O<@o<m isL+3.

Show this: Over the frequency range 0 <o < = , alternations of H(ei®) correspond to alterations
of the L-th order polynomialP(x) over-1<x <1, as shown in the previous figure.

An L-th order polynomial can have at most L-1 extrema. Four additional alternations can occur at
the four band edges x=-1, cos o, cos w , and 1.

(This corresponds to ® =m,®,0,,0). Therefore, the maximum possible number of alternations is
L +3. A filter with L + 3 alternations is called the "extra ripple" case.

It is interesting to note that the approximating polynomial function P(cos ) will always have a
slope of zero at ® =0and o ==, even though these may not be "alternations."

We can show this by taking the derivative of P(cos®w) as shown below:

L
P(cosw) = Y a (cosm)"
k=0

dP(cosm) _ —sinm[i ka, (cos 0))"'1] = —sinm[g (k +1)a,(cos (D)k] (equation 7.91)

dw k=0 k=0

Because of the multiplier, the derivative is 0 for ®=0and ® =™, Note in the figure that
alternations always occur at @p and ®s , as discussed later in this unit.




A (™)

Figure 7.46 Possible optimum B
lowpass filter approximations for L =7
(a) L -+ 3 alternations (extraripple case)-
(b) L + 2 alternations (extremum at
w=T).
(c) L + 2 alternations (extremum at w = 0).

(d) L+2 alternati ons (extremum at

w=0 andw =)

N
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Referring to the previous figure, if there is not an alternation at (Dp , then there also cannot be 22

an alternation at @ , since by definition, alternations have to represent alternating "error-high"
condition and "error-low" condition.

If neither ®, nor @_ is an alternation, then there are not enough other ways to have the L +2
needed for an optimum filters. Therefore, the optimum low-pass filter must have alternations at
both ®;and @, .

Optimum Type Il Low Pass Filters

The unit sample response for a causal Type Il filter whose h(n) extends over 0 < n £ M satisfies
the following symmetry condition, where M is odd:

h(n) =h(M-n).

Therefore, the frequenchxlresponse can be written as

. M : < : .
H(e) = ¥ h(k)e " = Y}’ h(n)[e™/*" + e-loM-1]
n=0 n=0

<

= @ M2 h(n)[e imgioM/2 | gioM/2g-jo(M-n)]

T i

.M M

=e e i h(n)[e*z ™ +e ™2™
n=0
M-1

_ 2
- e—JmM/ZZ Zh(n)COS[O) (% - nn (equation 7.106)
n=0



Nowletk=¥—n.

When n=0, k= M+1.

When n=¥, k=M+1_M-T_,

We can now write the above summation for the frequency response as

M+1
- o A [ M+1 M (M+1
H(ei) = e-ion2 ¥ ph[ MAT_ ) M_(M+1_
(e)=e é [ 5 Jcos[m[z [ 5 Jn
M+1

= e‘j“’WZi 2h [M - k] cos {w [k - ln
ke 2 2

1

If we also define b(k) as
b(k) = 2h(%-k)

the above expression for the frequency response can be written as

M+1

: 2 1
H(e*®) = e "2y b(k)cos [(D[k - ED (equation 7.107)
k=1
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Using the trig identity: cos(A)cos(B) = l[cos(A +B) + cos(A -B)] 24

and a lot of manipulation, the above can be written as
M-1

2 .
H(e*) = e7™2cos(w / 2) )’ b(k) cos (o)k).
k=0

As we have already seen, the above summation can be expressed as a trigonometric polynomial P(cos ®)
so that H(e’)can be written in the form:

H(e®) = e~ioM/2 cosL(m / 2)P(cosm) (equation 7.109a)
whereP(cosw) = Y a,(cosm)*. (equation 7.109b)
k=0

Therefore, in setting up a target response for P(cosw) , we must take into account the built-in cos(w / 2)
term for Type Il filters.

For a lowpass filter, the target for should be

Hd(e'jm) = DP(COS(D) = m,

for 0 <@ <m, (equation 7.110)

=0, foro, <o <.

If we want to specify a ratio K of passband to stopband ripple, the weighting function for Type Il
filters should also take into account the built in cos(w / 2)term, and should be

W(w) =W, (cosm) = cos(w /2)

K , forOS(oS(op

(equation 7.111)
=cos(w / 2), foro, <o <=



cos(w/ 2)

W(o) =W,(coso) ==—-~=*,  for0<o <o, (repeat of equation 7.111) 25

=cos(w / 2), foro, <w=<n

To see this, we can express the term to be minimized in the Alternation Theorem, using the
above expressions for D_(cos m) andW, (cos @) for Type Il filters, as follows:

E.(cosw) = W,(cos®)[D,(cosw) —P(cosw)]

_ cos(m / 2) 1
K cos(w/2)

—P(cosm) |, for0<owm <,
- %[1 — cos(m / 2)P(cos m)], for0<o <o

For o Sow<sn, the corresponding expressions for E,(cos )is
E,(cos o) = cos(w / 2)[0 —P(cos o))] = —cos(w / 2)P(cos w).

For Type lll and Type IV filters, we must also take into account built-in frequency dependent
functions when specifying a target response for, as summarized below:

Type lll filters Type IV filters

M
51

. . _ _ 2
H(e’*) = e”*"2sin(0) Y a, (cos )" H(e’*) = e™?sin(w / 2) ) a, (cos )"
k=0 k=0

M-1



