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Parks-McClellan Algorithm

The Parks-McClellan Algorithm is a computer method to find the unit sample response h(n) for an
optimum FIR filter that satisfies the conditions of the Alternation Theorem.

The method used by the Parks-McClellan Algorithm is summarized below:

Let Hd(ej“’) denote the desired frequency response over the specified disjoint frequency intervals. Also
let A_(e*) denote the frequency response for the optimum approximation.

Then, because of the Alternation Theorem, we know Ae(ej"’) will satisfy the following set of equations:

W(w,)[H, (") = A ()= (=1)*15, i=1,2,...,(L+2). (equation 7.112)
Dividing both sides by W(w,)gives

[Hy(€") - A ()] = s (D5, i=1,2,...(L+2)

which can also be expressed as

jo jo 1 i+1 .
H (e") = A (e -)+m(-1) 5, i=1,2,(L+2).

In matrix form, this can be expressed as
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where X;=cos®,
The frequenciesw, i=1,2,---,L+2, are the frequencies where alternations occur.

Based on the above set-up, the Parks-McClellan Algorithm uses the following steps to find the

optimum filter:

Step 1. Guess the values of the frequencies, ®;,
occur. (The frequencies @, and o, are fixed, and must be included as part of the above set.)

Step 2. Solve for$ , the approximation error at the "guessed" alternation frequencies o Using

L+2 .
3 b H,(e")
k=1

Z{ W(o,)

lew (equation 7.114)

i=1,2,---,L+2, where the alternations will



(equation 7.115)
where again X, = Cos o, .

Now assume that W(w, ) =1/ Kfor all @, in the passband (0 <w, < mp) and that W(w, ) =1for all @,
in the stopband ((,)s <o <n ).

At the current values of the alternation frequencies ®; the current version of the filter A (e*)
will then satisfy the following:

A (e°)=1£Ks ¢, O<o <0

! P

and

Ae(ej"’i) =13  for o, <0 <.
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Step 3. Use the Lagrange interpolation formula to calculate the value of A _(e*) over a fine-grain
of frequencies between the initial set of  values, using

L+1

_ X [d, 7 (x=x)IC, (equation 7.116a)
A, (e*) =P(cosm) = K51

Yd, /(x-x,)]

K=1

where x =cos® and X, =COS®, and

(_1)k+18

Ck = Hd(ejm)_ W((Ok)

(equation 7.116b)

L+1
and d = Hﬁ =b (X, —X_,,)- (equation 7.116c)
i=1 \ g i
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If, in the calculation of A_(€'*) over a dense set of frequencies, it is found that the weighted
approximation error E(w), which is defined as

E(0) = W(0)[H,(e*) - A (e*)]

satisfies |[E(m)| < |81 at all frequencies in the specified disjoint frequency intervals, then the
optimum filter has been found and the design process stops. Otherwise, the following step is
implemented:

Step 4. Repeat the above process, starting at step 2, but this time using new "guesses" of the
alternation frequencies: This time set the guesses equal to the frequencies where the

previous A_(e’*) had the largest L+2 error peaks, as determined in step 3. (As before, @, and o
must be included in this set.)

The following figure demonstrates Steps 3 and 4 at an intermediate cycle of the above process:
|
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Figure 7.49 lllustration of the
Ly i Parks-McClellan algorithm for
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The above steps are repeated until the extremal points ®, do not change by more than some

small prescribed amount from the previous iteration.

The following flow chart gives another view of the iterative process used to find the optimum

filter:
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Figure 7.50 Flowchart of
Parks-McClellan algorithm
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After the above process has converged, the values of h(n), which are also the coefficients of the
resulting filter, can be found as follows:
Step 1. Evaluate H(e*)=A_(e*)e "2 at R equally spaced samples:

0, =k2F,  Osk<R

where R >M , using the interpolation formula of step 3 above.

Step 2. Take the inverse DFT of the R samples of step 1. The first M outputs of the IDFT are the
desired h(n)forO<n <M,

(See the figure below from Chapter 8 that relates to how we obtain the final values for h(n).)

------

(b)

Figure 8.8 () Finite-length sequence x[n]. (b) Periodic sequence %[n] corre-
sponding to sampling the Fourier transform of x[n] with N = 12.



Characteristics of Optimum FIR Filters 8

The Parks-McClellan Algorithm finds the optimum filter (the one that minimizes the maximum
weighted approximation error) where the values of ®, , ®, and M (the filter order) are fixed.

It is interesting to note that the size of the resulting approximation error varies with ®,for the

case where the transition width and the error weighting function are fixed, as shown in the figure
below:

Passband or stopband ripple

Figure 7.51 yjjystration of the
dependence of passband and stopband
0.00 | | | error on cutoff frequency for o_ptimal

00 02w 04 06 08 7 approximations of a lowpass filter. For

this example, K = 1 and
Passband cutoff () (ws — wp) = 0.27.

The cases where local minima occur in the above figure correspond to "extra ripple" cases,
which have L+3 alternations instead of L+2.
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It is also interesting to note from the figure that increasing the filter order (e.g., fromM=9to M
= 10) may not reduce the approximation error, for some sets of design parameters.

The reason this can happen is that even-order filters are Type | filters while odd-order filters are
Type ll filters, which are fundamentally different.

However, the performance of any Type | filters can be improved, for any set of parameters, by
increasing its order by 2 (to the next available order for Type I).

The same is true for Type Il filters.

For optimum FIR filters, it has been determined that the order required to meet a set of design
requirements can be approximated by

-10log,,8,8,-13 where Ao=0 - (equation 7.117)
2.324A0

M=

If 8,=20, =39, this estimate for M becomes

—20log,,6-13
2.324A00
In order to compare performance with a filter designed using the Kaiser window, let A, =—-20log, 3

M=

Then the estimated value of M for the optimum filter becomes:
A,-13

M =_9Y%
0 2.324A0



Expressing A in terms of the filter order gives:

A, =2.324(A0)M, +13 db.

Recall for the Kaiser window method, the estimate for the required filter order was

_ AK -8
K™ 2.285Am0
so that for the Kaiser window method:

A, =2.285(A0)M, +8 db.

IfMO:MK,then A,=A+5.

Optimum Bandpass Filters

e Band-pass filters can have > L + 3 alternations
* In band-pass filters, local extrema can occur in transition regions.

Example
The desired frequency response is

0, 0<w<.3n
Hd(ej“’) =:{1, .3571 <w £.6m (equation 7.124)
0O, 7mw=in
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with the following weighting function:

1, O<w<=<.3rm
W(e®)={1, .35r<w <.6n
2, Info<irn

Therefore 8, =39, , and 8, = 59, .

If we select the filter order as M = 74, the corresponding value of Lis L = (M/2) = 37.
According to the Alternation Theorem, the optimum filter must have at least L + 2 =39
alternations.

The filter whose frequency response is shown in the figure below has 39 alternations and is
therefore optimum; however, this filter would be unacceptable due to the non-monotonic
response in the transition region.

(The kind of characteristic is not ruled out by the statement of the Alternation Theorem.)
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Figure 7.56 Optimum FIR bandpass
filter for M = 74. (a) Impulse response.
(b) Log magnitude of the frequency
response. (c) Approximation error
(unweighted).



Example: (Compensation for Zero-Order Hold) 12

Recall from Chapter 4 the structure for a system which has an continuous time input and output,
but which implements filtering using discrete-time processing:

—_ c/D »| Discrete-time |
X [n] system b/c

| . . . .
} : Figure 4.10 Discrete-time processing
T | of continuous-time signals.

An ideal D/C converter using an impulse generator and an ideal analog reconstruction filter is
shown in the figure below:

oo oCetrcontuction ystem. : | B (9
i | 1
|
: Convert from reco;;l:rilction : (*)
—>1 sequence to . ——>
(ny 1 |; B filter . ¢
Y ) 1 impulse train \{56\) B,(9) ; (
! 1 | ~__J N\ YN
: Sampling : ~4T5T \/_T 0 T\/ STTAT
L period T I
_____________________ 4 (C)
(a) . '
Figure 4.7 (q) Block diagram of an
: H,(0) ideal bandlimited signal reconstruction
T system. (b) Frquency response of an
ideal reconstruction filter. (c) Impulse
response of an ideal reconstruction filter.
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In practice, D/C conversion is typically implemented using a zero-order hold system, followed by
an modified analog reconstruction filter.

For this method, the Fourier Transform of the continuous time output is
Y(jQ)=X(e!%" )H(e!*")H, (jQ)H.(j)

where Ho(JQ) s the response of the zero-order hold system and |:|r(j9) is the response of the
modified analog reconstruction filter.

We have seen that a zero-order hold can be modeled as

- | where
‘ |
{ Convert from 1 Zero-order :
—~——>{ sequence to ‘ hold  f—r—t—>
Y(“\ { implﬂse train ‘ISG*S ho(t) b- Yo (*) h (t)= 1 ] O S t S T

| | 0*=10, alloth
l f { ; all other t
Il  Sampling :

v |l_ period T f




Therefore, H,(jQ) can be found as follows:

H,(jQ) = J‘ h,(t)e’* dt

T :
=}1 g - et _ —egiaT

5 Q| jQ

. [ QT
QT ar
2e2-¢"2 sl Zsm[ZJ
e EEe— = €
JQ Q

The figures below shows the frequency response for the zero-order hold H,(jQ) and the

frequency response for the modified reconstruction filter Flr(jQ) :

The product of these approximates the ideal interpolating filter, H,(J).

i - Ideal interpolating
Zero-order / \/ filter H,(j <))
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Figure 4.63 () Frequency response
of zero-order hold compared with ideal
interpolating filter. (b) Ideal
compensated reconstruction filter for
use with a zero-order-hold output.
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Note that the above | Hr(jg) | can be expressed mathematically as 15

)
Ao =l~221 <™

sin &T T and
2

Another way to compensate for non-uniform frequency response of the zero-order hold would
be to build the compensation into the internal digital filter.

For example, we could modify the original digital filter having frequency response H(e*T) with a
modified digital filter having response of

QT /2
sin(QT / 2)

A.(o) = 0, 101> %

H,(el™) = H(e!")

where H(e*") represents the desired response of the original digital filter. In this case, the ideal,
flat-passband, analog reconstruction filter H.(JQ) could be used for the final step.

When the desired overall filter is a low-pass filter, we could use the Parks-McClellan algorithm to
design a filter having the following target frequency response:

®/2
~ . —_— < <
A(em)={sin(/2) O =®= %

0, O SOST (equation 7.123)




The figure below shows the frequency response for filter of this type, where

o, = 0.4n o, =0.6n 8, =0.01
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Figure 7.55 Optimum
D/A-compensated lowpass filter for

®, = 0.4m,w, = 0.6w,K =10,and
M=28. (a) Impulse response (b) Log
magnitude of the frequency response.
(c) Magnitude response in passband.
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