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The	
  Discrete	
  Cosine	
  Transform	
  
•	
  similar	
  to	
  the	
  DFT	
  
•has	
  advantages	
  over	
  the	
  DFT	
  in	
  applica8ons	
  involving	
  data	
  compression	
  (e.g.,	
  coding	
  of	
  speech	
  
and	
  image	
  signals)	
  
•	
  can	
  be	
  computed	
  by	
  using	
  an	
  algorithm	
  that	
  applies	
  the	
  DFT	
  to	
  a	
  modified	
  input.	
  
	
  	
  
Before	
  defining	
  the	
  Discrete	
  Cosine	
  Transform,	
  consider	
  the	
  general	
  representa8on	
  of	
  a	
  
transform	
  of	
  a	
  finite	
  length	
  8me	
  domain	
  signal	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (analysis	
  equa8on) 	
   	
  (equa8on	
  8.147)	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (synthesis	
  equa8on) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa8on	
  8.148)	
  
	
  
The	
  sequences	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  the	
  above	
  expressions	
  are	
  called	
  basis	
  sequences	
  and	
  are	
  orthogonal	
  to	
  
each	
  other,	
  so	
  that	
  they	
  sa8sfy:	
  
	
  
	
  
	
  
For	
  the	
  DFT,	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  the	
  periodic	
  complex	
  exponen8al	
  sequences:	
  
	
  	
  
	
  

 x(n)

 
A(k) = x(n)φk

*

n=0

N-1

∑ (n)

 
x(n) = 1

N
A(k)φk

k=0

N-1

∑ (n)

 φk(n)

1
N φk

k=0

N-1
∑ (n) φm

* (n) = 1,    m = k
0,    m ≠ k.

⎧
⎨
⎩

 φk(n)

φk(n) = ej2πkn/N.
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There	
  are	
  some	
  orthogonal	
  transforms	
  which	
  yield	
  a	
  real-­‐valued	
  	
  	
  	
  	
  	
  	
  	
  	
  sequence	
  when	
  	
  	
  	
  	
  	
  	
  	
  is	
  real	
  
valued.	
  These	
  include:	
  

	
  •	
  Haar	
  Transforms	
  
	
  •	
  Hadamard	
  Transforms	
  
	
  •	
  Hartley	
  Transforms	
  
	
  •	
  Discrete	
  Cosine	
  Transform	
  

	
  
The	
  Discrete	
  Cosine	
  Transform	
  uses	
  cosine	
  func8ons	
  for	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  basis	
  func8ons.	
  
	
  
Important	
  proper8es	
  of	
  cosine	
  func8ons	
  when	
  used	
  as	
  basis	
  func8ons	
  for	
  a	
  transform:	
  
•	
  periodic	
  (like	
  the	
  exponen8als	
  used	
  by	
  the	
  DFT)	
  
•	
  even	
  symmetry	
  
To	
  begin	
  the	
  development	
  of	
  the	
  DCT,	
  consider	
  the	
  4-­‐point	
  signal	
  shown	
  below:	
  
	
  

 A(k)  x(n)

 φk(n)
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Each	
  of	
  the	
  8	
  versions	
  of	
  the	
  DCT	
  is	
  based	
  on	
  extending	
  an	
  N-­‐point	
  sequence	
  into	
  a	
  periodic	
  
sequence	
  which	
  has	
  certain	
  symmetry	
  proper8es,	
  as	
  described	
  below:	
  	
  	
  
	
  
Type-­‐1	
  Periodic	
  Extension	
  
The	
  first	
  version	
  of	
  the	
  DCT,	
  called	
  DCT-­‐1,	
  is	
  based	
  on	
  extending	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  into	
  the	
  periodic	
  signal	
  	
  
using	
  "Type-­‐1	
  periodic	
  extension."	
  	
  For	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  above	
  ,	
  the	
  Type-­‐1	
  periodic	
  extension	
  is	
  shown	
  
below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
Center	
  of	
  even	
  symmetry:	
  	
  	
  	
  
-­‐	
  The	
  last	
  point	
  of	
  x(n)	
  	
  	
  	
  	
  (	
  n	
  =	
  N-­‐1,	
  where	
  N	
  is	
  the	
  number	
  of	
  points	
  in	
  x(n))	
  

Period	
  of	
  	
  
	
  	
  

	
  
	
  

 x(n)   x1(n)
 x(n)

x1(n):  2N - 2 = 6

Figure	
  8.25	
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Type-­‐2	
  Periodic	
  Extension	
  
The	
  second	
  version	
  of	
  the	
  DCT	
  is	
  based	
  on	
  extending	
  	
  	
  	
  	
  	
  	
  	
  	
  into	
  the	
  periodic	
  signal	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  
"Type-­‐2	
  periodic	
  extension."	
  	
  For	
  the	
  above	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  Type-­‐2	
  periodic	
  extension	
  is	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Center	
  of	
  even	
  symmetry:	
  	
  
	
  	
  	
  	
  	
  
	
  	
  -­‐	
  Half-­‐sample	
  point	
  aVer	
  last	
  sample	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  N	
  =	
  number	
  of	
  points	
  in	
  x(n)).	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
Period	
  of	
  	
  
	
  
	
  

 x(n)    x2(n)
 x(n)

x2(n):  2N = 8

  
("n" = N - 1

2 ,

Figure	
  8.25	
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Type-­‐3	
  Periodic	
  Extension	
  
The	
  third	
  version	
  of	
  the	
  DCT	
  is	
  based	
  on	
  extending	
  	
  x(n)	
  into	
  the	
  periodic	
  signal	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  
"Type-­‐3	
  periodic	
  extension."	
  	
  For	
  the	
  above	
  x(n),	
  the	
  Type-­‐3	
  periodic	
  extension	
  is	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Center	
  of	
  odd	
  symmetry	
  
-­‐  Point	
  aVer	
  the	
  last	
  point	
  of	
  x(n)	
  	
  	
  	
  	
  	
  	
  (n	
  =	
  N,	
  where	
  N	
  =	
  length	
  of	
  x(n))	
  	
  
	
  	
  	
  	
  	
  	
  	
  (Note	
  that	
  x(N)	
  must	
  be	
  0.)	
  
Center	
  of	
  even	
  symmetry:	
  	
  
	
  	
  	
  -­‐	
  	
  The	
  point	
  n	
  =	
  2N	
  
	
  
	
  
	
  

   x3(n)

x3(n):  4N = 16

Figure	
  8.25	
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Type-­‐4	
  Periodic	
  Extension	
  
S8ll	
  another	
  version	
  of	
  the	
  DCT,	
  called	
  DCT-­‐4,	
  is	
  based	
  on	
  extending	
  x(n)	
  	
  into	
  the	
  periodic	
  signal	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
using	
  "Type-­‐4	
  periodic	
  extension."	
  	
  For	
  the	
  above	
  x(n),	
  the	
  Type-­‐4	
  periodic	
  extension	
  is	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Center	
  of	
  odd	
  symmetry:	
  
	
  -­‐	
  Half-­‐sample	
  point	
  aVer	
  last	
  point	
  of	
  x(n)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  N	
  =	
  number	
  of	
  points	
  in	
  x(n))	
  	
  
	
  
Center	
  of	
  even	
  symmetry:	
  
	
  
	
  	
  -­‐	
  The	
  point	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  N	
  =	
  number	
  of	
  points	
  in	
  x(n))	
  	
  	
  	
  	
  
	
  
Period	
  of	
  	
  
	
  
	
  	
  
	
  	
  	
  	
  
	
  

   x4(n)

x4(n):  4N = 16

  
("n" = N - 1

2 ,

Figure	
  8.25	
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Four	
  versions	
  of	
  the	
  DCT	
  are	
  closely	
  related	
  to	
  the	
  extended	
  signals	
  shown	
  above.	
  	
  	
  
These	
  are:	
  
	
  
	
  
	
  
	
  
	
  
Defini8on	
  of	
  DCT-­‐1	
  
First,	
  note	
  from	
  the	
  plot	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  shown	
  again	
  below,	
  that	
  we	
  could	
  create	
  a	
  signal	
  similar	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  
adding	
  a	
  periodic	
  extension	
  of	
  x(n)	
  (	
  aVer	
  appending	
  N-­‐2	
  0’s)	
  to	
  a	
  periodic	
  extension	
  of	
  x(-­‐n)	
  (also	
  with	
  
N-­‐2	
  appended	
  0’s).	
  	
  Note	
  that	
  both	
  extensions	
  have	
  the	
  same	
  period	
  of	
  2N-­‐2.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
(The	
  resul8ng	
  signal	
  would	
  be	
  same	
  as	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  except	
  that	
  the	
  first	
  and	
  last	
  points	
  in	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  would	
  overlap	
  
with	
  the	
  first	
  and	
  last	
  points	
  in	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  when	
  both	
  are	
  periodically	
  extended,	
  as	
  described	
  above.)	
  	
  	
  	
  
	
  
	
  	
  
	
  

  DCT -1  ↔    x1(n)

  DCT - 2  ↔   x2(n)

  DCT - 3  ↔   x3(n)

  DCT - 4  ↔   x4(n)

  
x1(n)   x1(n) 

  
x1(n)  x(n)

 x(-n)

(Repeat	
  of	
  figure	
  shown	
  	
  
on	
  a	
  previous	
  slide.)	
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To	
  compensate	
  for	
  the	
  "double	
  value"	
  terms	
  we	
  define	
  a	
  pre-­‐scaled	
  signal	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
where	
  
	
  
	
  
	
  
Then,	
  adding	
  the	
  periodic	
  extensions	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  period	
  =	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  will	
  create	
  the	
  
signal	
  we	
  defined	
  earlier	
  as	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  This	
  can	
  be	
  formally	
  expressed	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa8on	
  8.150)	
  	
  
	
  
We	
  now	
  formally	
  define	
  the	
  DCT-­‐1	
  of	
  an	
  N-­‐point	
  signal	
  and	
  the	
  inverse	
  DCT-­‐1	
  by	
  the	
  following	
  
two	
  equa8ons:	
  
	
  
	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  same	
  sequence	
  as	
  used	
  in	
  defining	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
	
  
	
  
	
  
	
  

 xα(n)

 xα(n) = α(n)x(n)

 
α(n) =

1
2,     n = 0 and N -1
1,       1 ≤ n ≤ N - 2

⎧
⎨
⎪

⎩⎪

 xα(n)  xα(-n)  2N − 2 = 6
  
x1(n)

  
x1(n) = xα[((n))2N-2]+ xα[((-n))2N-2] 

 
Xc1(k) = 2 α(n)x(n)cos πkn

N −1
⎛

⎝⎜
⎞

⎠⎟n=0

N−1

∑ ,       0 ≤ k ≤ N-1

 
x(n) = 1

N −1
α(k)Xc1(k)cos πkn

N −1
⎛

⎝⎜
⎞

⎠⎟k=0

N−1

∑ ,       0 ≤ k ≤ N-1

 α(k)  xα(n)
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Defini8on	
  of	
  DCT-­‐2	
  
The	
  DCT-­‐2	
  transform	
  is	
  related	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  second	
  version	
  of	
  a	
  periodic	
  sequence	
  based	
  on	
  x(n).	
  
Note	
  from	
  the	
  plot	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  that	
  we	
  could	
  create	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  adding	
  a	
  periodic	
  extension	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  
(with	
  period	
  =	
  2N)	
  to	
  a	
  periodic	
  extension	
  of	
  	
  x(-­‐n-­‐1),	
  also	
  with	
  period	
  =	
  2N.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  resul8ng	
  signal	
  would	
  be	
  exactly	
  the	
  same	
  as	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  since	
  there	
  are	
  no	
  overlaps	
  involved	
  
when	
  the	
  two	
  contribu8ons	
  are	
  added.	
  	
  We	
  can	
  formally	
  express	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  terms	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
follows:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa8on	
  8.154)	
  
We	
  now	
  formally	
  define	
  the	
  DCT-­‐2	
  and	
  its	
  inverse	
  by	
  the	
  following	
  two	
  equa8ons:	
  
	
  
	
  

   x2(n)

   x2(n)    x2(n)  x(n)

   x2(n)
   x2(n)  x(n)

  
x2(n) = x[((n))2N]+ x[((-n -1))2N]

 
Xc2(k) = 2 x(n)cos πk(2n +1)

2N
⎛

⎝⎜
⎞

⎠⎟n=0

N−1

∑ ,       0 ≤ k ≤ N-1

 
x(n) = 1

N
β(k)Xc2(k)cos πk(2n +1)

2N
⎛

⎝⎜
⎞

⎠⎟n=0

N−1

∑ ,       0 ≤ n ≤ N-1

(Repeat	
  of	
  figure	
  shown	
  	
  
on	
  a	
  previous	
  slide.)	
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The	
  weigh8ng	
  func8on	
  	
  	
  	
  	
  	
  	
  	
  	
  used	
  in	
  the	
  above	
  expression	
  for	
  the	
  inverse	
  DCT-­‐2	
  is	
  defined	
  as	
  
follows:	
  
	
  
	
  
	
  
The	
  sequences	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  obtained	
  for	
  the	
  4-­‐point	
  signal	
  	
  	
  	
  	
  	
  	
  	
  	
  used	
  to	
  form	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  described	
  above	
  are	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Although	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  normally	
  evaluated	
  only	
  for	
  the	
  range	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (for	
  the	
  above	
  
example,	
  N	
  =	
  4),	
  if	
  we	
  do	
  evaluate	
  them	
  outside	
  this	
  range,	
  they	
  exhibit	
  symmetry	
  proper8es.	
  	
  
However,	
  it	
  is	
  not	
  always	
  the	
  same	
  type	
  of	
  symmetry	
  associated	
  the	
  periodically	
  extended	
  8me	
  
signal	
  it	
  is	
  related	
  to.	
  That	
  is,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  has	
  Type	
  1	
  symmetry,	
  like	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  However,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  has	
  Type	
  
3	
  symmetry,	
  not	
  the	
  Type	
  2	
  symmetry	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  

 β(k)

β(k) =
1
2,     k = 0
1,       1 ≤ k ≤ N -1.

⎧
⎨
⎪

⎩⎪

 Xc1(k)  Xc2(k)  x(n)    x1(n)

   x2(n)

 Xc1(k)  Xc2(k)  0 ≤ k ≤ N-1

 Xc1(k)    x1(n)  Xc2(k)
   x2(n)

10	
  



Rela8on	
  Between	
  the	
  DCT-­‐1	
  and	
  the	
  DFT	
  
Consider	
  one	
  period	
  of	
  the	
  periodic	
  8me	
  signal	
  associated	
  with	
  DCT-­‐1:	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (eqn.	
  8.161)	
  
where	
  as	
  before	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  original	
  N-­‐point	
  sequence	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  its	
  endpoints	
  mul8plied	
  by	
  	
  	
  	
  .	
  	
  	
  
Note	
  that	
  the	
  number	
  of	
  points	
  in	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
Now	
  take	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  point	
  DFT	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
(See	
  property	
  10	
  of	
  the	
  DFT	
  (in	
  Table	
  8.1)	
  and	
  property	
  10	
  of	
  the	
  DFS	
  (in	
  Tables	
  8.2)	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  2N	
  -­‐2	
  point	
  DFT	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  aVer	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  zero-­‐padded	
  to	
  extend	
  its	
  length	
  from	
  
N	
  to	
  2N-­‐2	
  .	
  
Finally,	
  expressing	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  cosines,	
  we	
  can	
  write	
  the	
  above	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  
Note	
  that	
  the	
  right	
  side	
  of	
  the	
  above	
  expression	
  is	
  the	
  same	
  expression	
  we	
  used	
  to	
  define	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  
the	
  DCT-­‐1	
  of	
  x(n).	
  
	
  
	
  
	
  
	
  
	
  
	
  

  x1(n) = xα[((n))2N-2]+ xα[((-n))2N-2] = x1(n)   n = 0,1, ... ,2N-3

 xα(n)  x(n)
 
1
2

  x1(n)  2N − 2

 2N − 2   x1(n)

 X1(k) = Xα(k) + Xα
* (k) = 2Re{Xα(k)},        k=0,1,...,2N-3

 Xα(k)  xα(n)  xα(n)

 Re{Xα(k)}  X1(k)

 
X1(k) = 2Re{Xα(k)} = 2 α(n)x(n)cos 2πkn

2N − 2
⎛

⎝⎜
⎞

⎠⎟n=0

N−1

∑

 Xc1(k)

=  2 α(n)x(n)cos πkn
N −1

⎛

⎝⎜
⎞

⎠⎟n=0

N−1

∑ ,          0 ≤ k ≤ 2N −1.
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Therefore,	
  we	
  can	
  find	
  the	
  DCT-­‐1	
  of	
  an	
  N-­‐point	
  signal	
  as	
  follows:	
  	
  
1.  Form	
  	
  	
  	
  	
  
2.  Form	
  	
  
3.  Take	
  the	
  2N-­‐2	
  point	
  DFT	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  get	
  
4.  Extract	
  the	
  first	
  N	
  terms	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  form	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  (This	
  provides	
  terms	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .)	
  
	
  
OR	
  (the	
  simpler	
  approach)	
  
1.  Form	
  
2.  "Zero-­‐pad”	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  N-­‐2	
  zeros	
  to	
  create	
  a	
  sequence	
  over	
  the	
  range	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
3.  Take	
  the	
  	
  2N-­‐2	
  point	
  DFT	
  of	
  the	
  above	
  sequence	
  to	
  get	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
4.  Form	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  twice	
  the	
  real	
  part	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  

Inverse	
  DCT-­‐1	
  
To	
  find	
  the	
  Inverse	
  DCT-­‐1,	
  we	
  start	
  with	
  the	
  knowledge	
  that	
  the	
  first	
  N	
  terms	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  equal	
  to	
  
to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  
Then	
  we	
  use	
  the	
  symmetry	
  property	
  for	
  the	
  DFT	
  of	
  real	
  signals:	
  	
  
	
  
and	
  the	
  fact	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  real	
  valued	
  to	
  form	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  follows:	
  
	
  
	
  
	
  

 xα(n) = α(n)x(n)  0 ≤ n ≤ N-1

  x1(n) = xα[((n))2N-2]+ xα[((-n))2N-2] = x1(n)   n = 0,1, ... ,2N-3

 x1(n)  X1(k)

 X1(k)  Xc1(k)  0 ≤ k ≤ N-1

 xα(n) = α(n)x(n)  0 ≤ n ≤ N-1

 xα(n)  0 ≤ n ≤ 2N-3

 Xα(k)

 Xc1(k)  Xα(k)  0 ≤ k ≤ N-1

 X1(k)
 Xc1(k)

 X1(k) = X1
*(2N − 2 − k)

 Xc1(k)  X1(k)

 
X1(k) = Xc1(k),                      k = 0,...,N-1

Xc1(2N − 2 − k)          k = N,...,2N-3
⎧
⎨
⎪

⎩⎪

 Xc1(k)
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Then,	
  applying	
  the	
  formula	
  for	
  evalua8ng	
  2N-­‐2	
  point	
  inverse	
  DFT,	
  we	
  can	
  express	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  
Finally,	
  we	
  can	
  obtain	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  extrac8ng	
  the	
  first	
  N	
  points	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  That	
  is,	
  
	
  
	
  
Rela8on	
  of	
  the	
  DCT-­‐2	
  and	
  the	
  DFT	
  
Consider	
  one	
  period	
  of	
  the	
  periodic	
  signal	
  associated	
  with	
  the	
  DCT-­‐2:	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa8on	
  8.166) 	
   	
  	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  original	
  N-­‐point	
  signal.	
  Now	
  take	
  the	
  2N	
  point	
  DFT	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  2N-­‐point	
  DFT	
  of	
  	
  the	
  sequence	
  formed	
  by	
  zero-­‐padding	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  extend	
  its	
  
length	
  from	
  	
  N	
  to	
  2N.	
  
	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  
	
  
	
  

 x1(n)

x1(n) = 1
2N − 2

X1(k)ej2πkn/(2N−2)

k=0

2N−3

∑ ,           n = 0, ... , 2N-3.

 x(n)  x1(n)

 x(n) = x1(n),       n=0, . . ., N-1

  x2(n) = x[((n))2N]+ x[((-n -1))2N] = x2(n)   n=0,1,... ,2N-1

 x(n)   x2(n)

 X2(k) = X(k) + X*(k)ej2πk/(2N),       k=0,1,...,2N-1

 = ejπk/(2N) X(k)e− jπk/(2N) + X*(k)ejπk/(2N)( )

 =ejπk/(2N)2Re X(k)e− jπk/(2N){ }
 X(k)  x(n)
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Note	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  expressed	
  as:	
  
	
  
	
  
Therefore,	
  we	
  can	
  write	
  the	
  above	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  
Comparing	
  this	
  with	
  the	
  expression	
  we	
  used	
  to	
  define	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  (see	
  slide	
  9)	
  we	
  can	
  now	
  write	
  
	
  
	
  
Therefore,	
  we	
  can	
  find	
  the	
  DCT-­‐2	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  the	
  following	
  steps:	
  
1.  Take	
  the	
  2N-­‐point	
  DFT	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  one	
  period	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  
2.  Mul8ply	
  the	
  first	
  N	
  terms	
  of	
  the	
  output	
  of	
  step	
  1	
  by	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  obtain	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  ,	
  
	
  
Inverse	
  DCT-­‐2	
  
To	
  find	
  the	
  Inverse	
  DCT-­‐2,	
  we	
  start	
  with	
  the	
  previous	
  result	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  equal	
  to	
  the	
  first	
  N	
  
terms	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  We	
  also	
  use	
  the	
  fact	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  has	
  Type	
  3	
  symmetry.	
  	
  i.e.,	
  	
  
	
  
	
  
(This	
  symmetry	
  property	
  can	
  be	
  shown	
  using	
  the	
  defini8on	
  fo	
  the	
  DCT-­‐2	
  in	
  eqn.	
  8.155).	
  

 Re X(k)e− jπk/(2N){ }
Re X(k)e− jπk/(2N){ } = x(n)cos πk(2n +1)

2N
⎛

⎝⎜
⎞

⎠⎟n=0

N−1

∑ .

  X2(k)

 
X2(k) = ejπk/(2N)2 x(n)cos πk(2n +1)

2N
⎛

⎝⎜
⎞

⎠⎟n=0

N−1

∑  k=0,1,...,2N-1

 Xc2(k)

 X
c2(k) = e− jπk/(2N)X2(k),      k=0,1,...,N-1

 x(n)

 x2(n) = x[((n))2N]+ x[((-n -1))2N]   x2(n)    x2(n)

 e− jπk/(2N)
 Xc2(k)  k=0,1,...,N-1

 Xc2(k)
 X2(k)e− jπk/(2N)

 Xc2(k)

 Xc2(2N − k) = −Xc2(k),                k = 0, 1, . . ., 2N-1
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Combining	
  the	
  above	
  two	
  facts,	
  we	
  can	
  write:	
  
	
  
	
  
	
  
	
  
Then,	
  using	
  the	
  formula	
  for	
  evalua8ng	
  the	
  2N-­‐point	
  inverse	
  DFT,	
  we	
  can	
  express	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  
Finally,	
  we	
  can	
  obtain	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  extrac8ng	
  the	
  first	
  N	
  points	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  That	
  is,	
  
	
  
	
  
Energy	
  Compac8on	
  Property	
  of	
  the	
  DCT-­‐2	
  
More	
  of	
  the	
  energy	
  of	
  a	
  signal	
  is	
  represented	
  by	
  the	
  low	
  indices	
  of	
  its	
  DCT-­‐2	
  than	
  by	
  the	
  low	
  
indices	
  of	
  its	
  DFT,	
  as	
  shown	
  in	
  the	
  example	
  below:	
  
	
  
Example	
  8.13	
  
Consider	
  a	
  signal	
  of	
  the	
  form:	
  
	
  
	
  	
  
	
  
	
  

X2(k) =

Xc2(0),                        k = 0
ejπk/(2N)Xc2(k)               k = 1, . . ., N-1
0                                k = N
−ejπk/(2N)Xc2(2N − k)      k = N+1, N+2, . . ., 2N-1

⎧

⎨
⎪
⎪

⎩
⎪
⎪

  x2(n)

x2(n) = 1
2N

X2(k)ej2πkn/(2N)

k=0

2N−1

∑ ,        n=0,...,2N-1 .

 x(n)   x2(n)

x(n) = x2(n),       n = 0, . . ., N-1.

x(n) = an cos(ω0n + φ),        n = 0, . . ., N-1. 
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  8.175	
  



This	
  signal	
  is	
  ploced	
  below	
  for	
  the	
  following	
  set	
  of	
  parameter	
  values:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

 a = .9,  ω0 = .1π,  φ = 0,and N = 32.
16	
  



The	
  first	
  16	
  terms	
  of	
  the	
  32-­‐point	
  DFT	
  are	
  shown	
  in	
  parts	
  (a)	
  and	
  (b)	
  of	
  the	
  figure	
  below.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(The	
  second	
  16	
  terms	
  in	
  each	
  case	
  are	
  conjugate	
  symmetric	
  pairs	
  with	
  the	
  first	
  16	
  terms,	
  so	
  they	
  
contain	
  no	
  addi8onal	
  informa8on)	
  	
  Part	
  (c)	
  of	
  the	
  figure	
  shows	
  the	
  32-­‐point	
  DCT-­‐2.	
  
	
  
	
  

17	
  

Note	
  that	
  more	
  of	
  the	
  “energy”	
  of	
  the	
  DCT-­‐2	
  is	
  contained	
  in	
  the	
  lower	
  index	
  terms,	
  than	
  for	
  the	
  	
  
case	
  of	
  the	
  DFT.	
  



To	
  quan8fy	
  the	
  comparison	
  of	
  the	
  energy	
  compac8on	
  property	
  of	
  the	
  DCT-­‐2	
  with	
  that	
  of	
  	
  the	
  
DFT,	
  first	
  define	
  a	
  term	
  that	
  represents	
  the	
  approxima8on	
  of	
  the	
  8me-­‐domain	
  signal	
  x(n)	
  using	
  
the	
  DFT	
  synthesis	
  equa8on	
  aVer	
  removing	
  m	
  of	
  the	
  higher	
  frequency	
  terms	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  That	
  is,	
  
	
  
	
  

 X(k)

 
xm

dft(n) = 1
N

Tm(k)
k=0

N−1

∑ X(k)ej2πkn/N,        n=0, . . ., N-1
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where	
  

 

Tm(k) =
1,        0 ≤ k ≤ (N-1-m)/2
0.        (N+1-m)/2 ≤ k ≤ (N-1+m)/2
1,        (N+1+m)/2 ≤ k ≤ N-1

⎧

⎨
⎪

⎩
⎪

(sets	
  m	
  "middle-­‐indexed"	
  terms	
  to	
  0)	
  

Note	
  that	
  when	
  m	
  =	
  1,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  removed.	
  
For	
  m	
  =	
  3,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  removed.	
  
For	
  m	
  =	
  5,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  removed.	
  
	
  

 x(N/2)
 X(N/2-1), x(N/2), and X(N/2+1)

 x(N/2-2), x(N/2-1), x(N/2), x(N/2+1), and x(N/2+2)

For	
  comparison,	
  the	
  synthesis	
  of	
  x(n)	
  using	
  a	
  truncated	
  set	
  of	
  DCT-­‐2	
  coefficients	
  in	
  which	
  
m	
  coefficients	
  have	
  been	
  removed	
  can	
  be	
  represented	
  as	
  

 
xm

dct(n) = 1
N

β(k)
k=0

N−1−m

∑ Xc2(k)cos πk(2n +1)
2N

⎛

⎝⎜
⎞

⎠⎟
,    n=0, . . ., N-1



To	
  compare	
  the	
  errors	
  in	
  synthesizing	
  x(n)	
  using	
  truncated	
  sets	
  of	
  DFT	
  and	
  DCT-­‐2	
  	
  
coefficients,	
  we	
  define	
  the	
  following	
  error	
  func8ons:	
  
	
  
	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  

 
Edft(m)= 1

N
| x(n)

n=0

N−1

∑ − xm
dft(n) |2

 
Edct(m)= 1

N
| x(n)

n=0

N−1

∑ − xm
dct(n) |2

19	
  

and	
  

The	
  following	
  figure	
  plots	
  both	
  of	
  the	
  above	
  error	
  func8ons	
  for	
  the	
  previously	
  
described	
  signal,	
  which	
  is	
  

 x(n) = .9n cos(.1πn),        n=0, . . ., 31 

Because	
  of	
  the	
  good	
  energy	
  compac8on	
  property	
  of	
  the	
  DCT-­‐2	
  as	
  compared	
  to	
  the	
  DFT,	
  the	
  DCT-­‐2	
  
is	
  very	
  effec8ve	
  for	
  use	
  in	
  data	
  compression	
  applica8ons	
  (e.g.,	
  speech	
  and	
  image	
  processing.)	
  


