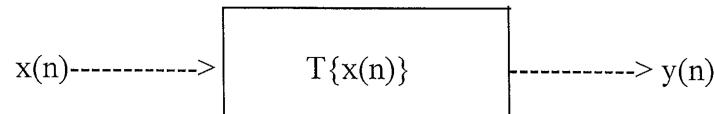


## Cepstral Analysis and Homomorphic Deconvolution

Recall the general representation of a linear system:



A linear system exhibits the following superposition property:

$$T\{x_1(n) + x_2(n)\} = T\{x_1(n)\} + T\{x_2(n)\}$$

and also

$$T\{cx(n)\} = cT\{x(n)\}$$

where  $c$  is any scalar.

We now generalize to the case of homomorphic systems, which obey a general principle of superposition:

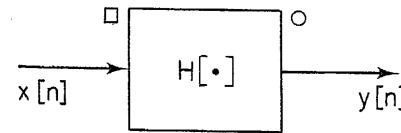
$$H\{x_1(n) \square x_2(n)\} = H\{x_1(n)\} \circ H\{x_2(n)\}$$

where " $\square$ " is an operation for combining inputs and " $\circ$ " is an operation for combining outputs. The homomorphic system also satisfies

$$H\{c : x(n)\} = c \uparrow H\{x(n)\}$$

where " $:$ " is an operation for combining inputs with scalars and " $\uparrow$ " is an operation for combining outputs with scalars.

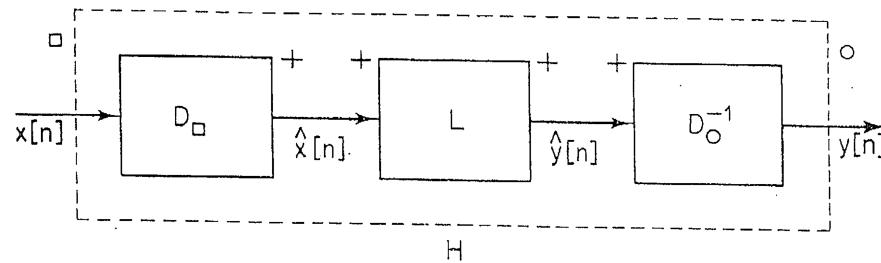
The following figure provides a block diagram representation for a homomorphic system:



Representation of a system  
satisfying generalized superposition with  
input operation  $\square$ , output operation  $\circ$ ,  
and system transformation  $H$ .

For the special case where  $\square$  and  $\circ$  represent addition and  $:$  and  $\cdot$  represent multiplication, the system is linear.

The following is called a "canonic" representation of a homomorphic system:



Canonic representation of homomorphic systems.

The subsystem  $D_{\square}$  is called the characteristic system for the operation  $\square$ , since it converts inputs combined by the operation  $\square$  to a signal whose components are combined by addition.

The subsystem  $D_{\circ}^{-1}$  is called the inverse characteristic system for the operation  $\circ$  since it converts inputs combined by addition to a signal whose components are combined by the operation  $\circ$ .

Consider the canonic representation for a system for which the input operation is convolution (\*) and the output operation is also convolution (\*).

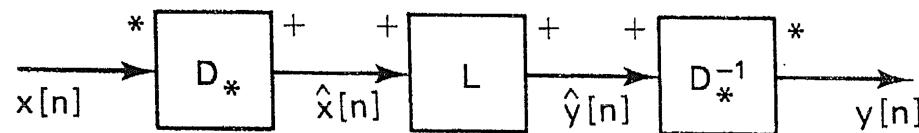


Figure 13.6 Canonic form for homomorphic systems where inputs and corresponding outputs are combined by convolution.

If  $x(n) = x_1(n) * x_2(n)$

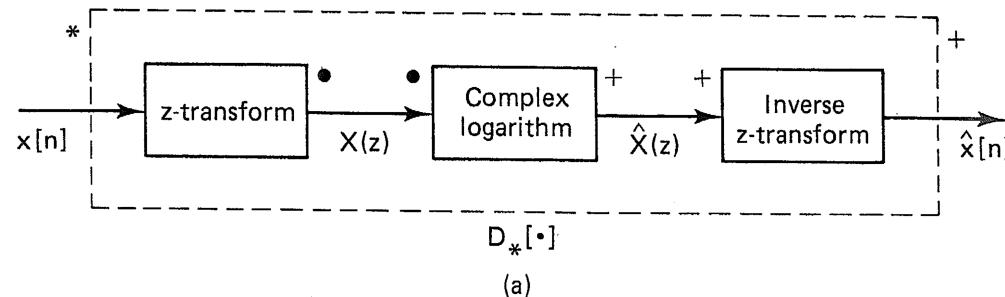
then  $\hat{x}(n) = \hat{x}_1(n) + \hat{x}_2(n)$ .  $\longleftrightarrow$  homomorphic deconvolution

The output of the system  $D_*$  is called the complex cepstrum of the input signal  $x(n)$ .

Also,  $\hat{y}(n) = \hat{y}_1(n) + \hat{y}_2(n)$   $\longleftrightarrow$  linear filtering of deconvolved signal

and  $y(n) = y_1(n) * y_2(n)$   $\longleftrightarrow$  puts output signal in "original form"

How to implement the characteristic system for convolution,  $D_*$ :



First box (applying z-transform or Fourier transform)

$$\text{Input: } x(n) = x_1(n) * x_2(n) \quad \text{Output: } X(z) = X_1(z)X_2(z)$$

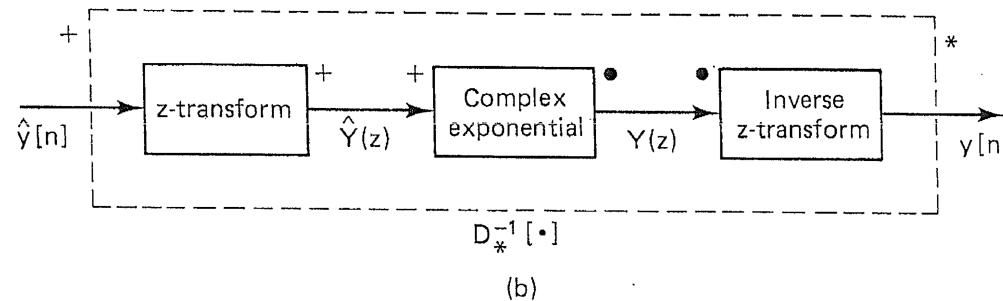
Second box (applying complex logarithm)

$$\text{Input: } X(z) = X_1(z)X_2(z) \quad \text{Output: } \hat{X}(z) = \hat{X}_1(z) + \hat{X}_2(z)$$

Third box (applying inverse z-transform)

$$\text{Input: } \hat{X}(z) = \hat{X}_1(z) + \hat{X}_2(z) \quad \text{Output: } \hat{x}(n) = \hat{x}_1(n) + \hat{x}_2(n).$$

How to implement the inverse characteristic system for convolution,  $D_*^{-1}$ :



Input:  $\hat{y}(n) = \hat{y}_1(n) + \hat{y}_2(n)$

Output of first box (applying z-transform):  $\hat{Y}(z) = \hat{Y}_1(z) + \hat{Y}_2(z)$

Output of second box (applying complex exponentiation):

$$Y(z) = e^{\hat{Y}_1(z) + \hat{Y}_2(z)} = e^{\hat{Y}_1(z)} e^{\hat{Y}_2(z)} = Y_1(z) Y_2(z)$$

Output of third box (applying inverse z-transform):  $y(n) = y_1(n) * y_2(n)$

Now consider the linear part of the canonical system for convolution:

Example:

If  $\hat{x}_1(n) = 0$  for  $n \geq n_0$

and  $\hat{x}_2(n) = 0$  for  $n < n_0$

then a linear system which can remove  $\hat{x}_2(n)$  from the combined signal  $\hat{x}_1(n) + \hat{x}_2(n)$ , leaving  $\hat{x}_1(n)$ , is:  $\hat{y}(n) = \ell(n)\hat{x}(n)$  where

$$\ell(n) = \begin{cases} 1, & n < n_0 \\ 0, & n \geq n_0. \end{cases}$$

This is a linear frequency-invariant filter and is often called a "lifter" instead of a filter.

The index  $n$  of  $\hat{y}(n)$  is called the "quefrency" index.

In the above example, the output of the lifter is  $\hat{y}(n) = \hat{x}_1(n)$ .

The corresponding frequency domain operation of the lifter system is

$$\hat{Y}(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{X}(e^{j\omega})L(e^{j(\omega-\theta)})d\theta.$$

### Section 13.2 Definition of the Complex Cepstrum

Assume that  $x(n)$  is a "stable signal" (so that the region of convergence of  $X(z)$  includes the unit circle in the  $z$ -plane).

Now let  $\hat{X}(z) = \log X(z)$  (equation 13.9)

If  $\hat{X}(z)$  can be also represented in a power series of the form

$$\hat{X}(z) = \sum_{n=-\infty}^{\infty} \hat{x}(n)z^{-n}$$

which converges for  $|z| = 1$ , then  $\hat{x}(n)$  is defined as the complex cepstrum of  $x(n)$ .

The sequence  $\hat{x}(n)$  could be found from  $\hat{X}(z) = \log X(z)$  via the inverse z-transform:

$$\hat{x}(n) = \frac{1}{2\pi j} \oint_C \log X(z) z^{n-1} dz$$

where the integration contour C can be the unit circle.

Since the contour C can be chosen as the unit circle in the z-plane, it can also be expressed in terms of the inverse DTFT:

$$\begin{aligned} \hat{x}(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \log X(e^{j\omega}) e^{j\omega n} d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} [\log |X(e^{j\omega})| + j \arg X(e^{j\omega})] e^{j\omega n} d\omega. \end{aligned} \quad (\text{equation 13.13})$$

Note that the complex log is used, since  $X(e^{j\omega})$  can in general be complex.

Note: Despite its name, the "complex cepstrum" is not necessarily complex-valued. In fact, if a signal is real, its complex cepstrum will also be real, as shown below:

If  $x(n)$  is real, then  $\arg[X(e^{j\omega})]$  is an odd function of  $\omega$  and  $|X(e^{j\omega})|$  is an even function of  $\omega$ .

Therefore,  $\log |X(e^{j\omega})|$  is also an even function. It is also true that

$\text{IDTFT}\{\log |X(e^{j\omega})| + j \arg[X(e^{j\omega})]\}$  is real, as shown below:

$$\begin{aligned}
 & \frac{1}{2\pi} \int_{-\pi}^{\pi} \{\log |X(e^{j\omega})| + j\arg[X(e^{j\omega})]\} e^{j\omega n} d\omega \\
 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \{\log |X(e^{j\omega})| + j\arg[X(e^{j\omega})]\} \{\cos \omega n + j \sin \omega n\} d\omega \\
 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \{\log |X(e^{j\omega})| \cos \omega n - \arg[X(e^{j\omega})] \sin \omega n\} d\omega
 \end{aligned}$$

which is real. (The imaginary part of the integral is zero because the integration of odd functions over a symmetric range of values, centered at  $= 0$ , is equal to 0.)

Therefore, if  $x(n)$  is real (and stable), then the complex cepstrum  $\hat{x}(n)$  will also be real (if it exists).

### Section 13.3 Properties of the Complex Log

Consider a stable  $x(n)$ . In order for  $\hat{x}(n)$  to exist, it is necessary and sufficient that the region of convergence of  $\hat{X}(z) = \log X(z)$  include the unit circle. (This follows from the definition of  $\hat{x}(n)$ .)

If  $\hat{x}(n)$  exists, then

$$\hat{X}(e^{j\omega}) = \log |X(e^{j\omega})| + j \arg[X(e^{j\omega})]. \quad (\text{equation 13.16})$$

Both  $\log |X(e^{j\omega})|$  and  $\arg[X(e^{j\omega})]$  must be continuous functions, since  $\hat{X}(z)$  is analytic within its region of convergence, and  $\hat{X}(e^{j\omega})$  is equal to  $\hat{X}(z)$  on the unit circle.

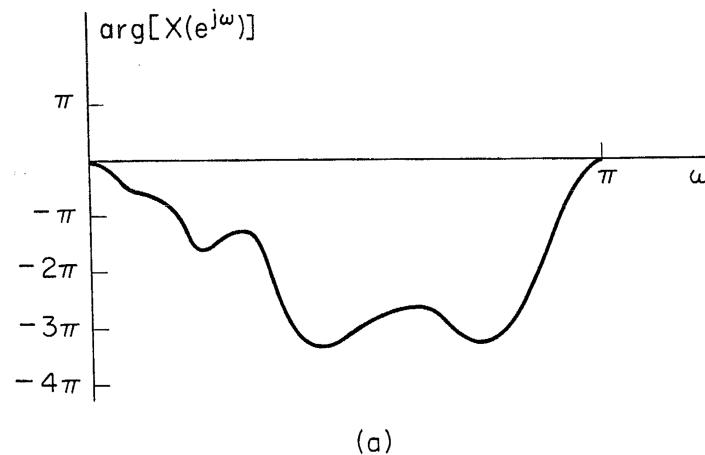
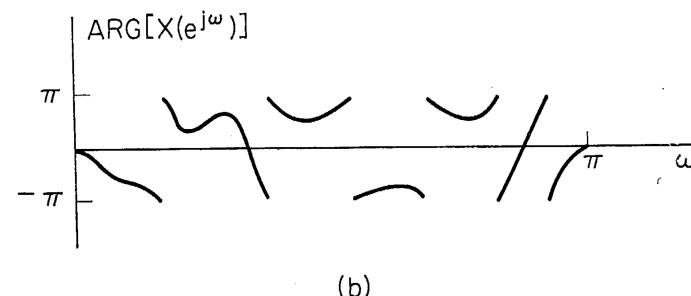
Now consider the evaluation of  $\arg[X(e^{j\omega})]$ . Most computer routines produce  $\text{ARG}[X(e^{j\omega})]$ , the "principal value" of the log, which satisfies

$$-\pi \leq \text{ARG}[X(e^{j\omega})] \leq \pi.$$

The relation between  $\text{ARG}[X(e^{j\omega})]$  and the "true phase"  $\arg[X(e^{j\omega})]$  is

$$\arg[X(e^{j\omega})] = \text{ARG}[X(e^{j\omega})] + 2\pi r(\omega)$$

where  $r(\omega)$  is always integer-valued. Therefore, to find the true  $\arg[X(e^{j\omega})]$  it is necessary to "unwrap"  $\text{ARG}[X(e^{j\omega})]$ . This can be seen from the figure below:



(a) Typical phase curve for a z-transform evaluated on the unit circle. (b) Principal value of the phase in part (a).

If  $X(e^{j\omega}) = X_1(e^{j\omega})X_2(e^{j\omega})$ , then in order to evaluate the cepstrum we want

$$\hat{X}(e^{j\omega}) = \hat{X}_1(e^{j\omega}) + \hat{X}_2(e^{j\omega}).$$

We will have this relation between  $\hat{X}(e^{j\omega})$ ,  $\hat{X}_1(e^{j\omega})$ , and  $\hat{X}_2(e^{j\omega})$  if  $\arg[X(e^{j\omega})]$  is used in evaluating  $\log X(e^{j\omega})$ . However, this relation will not necessarily be present if  $\text{ARG}[X(e^{j\omega})]$  is used in evaluating  $\log X(e^{j\omega})$ .

Example:

$$\arg[X_1(e^{j\omega})] = -100^\circ \quad \text{ARG}[X_1(e^{j\omega})] = -100^\circ$$

$$\arg[X_2(e^{j\omega})] = -150^\circ \quad \text{ARG}[X_2(e^{j\omega})] = -150^\circ$$

$$\arg[X(e^{j\omega})] = -250^\circ \quad \text{ARG}[X(e^{j\omega})] = 110^\circ$$

Now define the "real cepstrum" as

$$c_x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} [\log |X(e^{j\omega})|] e^{j\omega n} d\omega. \quad (\text{equation 13.14})$$

If  $x(n)$  is real,  $|X(e^{j\omega})|$  and  $\log |X(e^{j\omega})|$  are even, and therefore  $c_x(n)$  is real.

Since  $c_x(n)$  is the DTFT pair with  $\text{Re}\{\hat{X}(e^{j\omega})\}$ , we know that

$c_x(n)$  = "conjugate symmetric" part of  $\hat{x}(n)$ , that is:

$$c_x(n) = \frac{\hat{x}(n) + \hat{x}^*(-n)}{2}. \quad (\text{equation 13.15})$$

Note:  $c_x(n)$  is easier to compute than  $\hat{x}(n)$ , since it does not involve the complex part of the log.

Note: The original signal  $x(n)$  cannot be completely recovered from  $c_x(n)$ .

## Calculating the Complex Cepstrum Without Calculating the Complex Log

### Method 1:

Consider  $\hat{x}(n)$ , the complex cepstrum of  $x(n)$ .

The z-transform of  $\hat{x}(n)$  is  $\hat{X}(z) = \log X(z)$ .

Since  $\hat{x}(n)$  is stable, the region of convergence of  $\hat{X}(z)$  includes the unit circle.

Therefore,  $\hat{X}(z)$  is analytic on the unit circle. This means that  $\hat{X}(z)$  and all its derivatives are continuous on the unit circle.

Now consider the derivative of  $\hat{X}(z)$ :

$$\hat{X}'(z) = \frac{d}{dz} \log X(z) = \frac{1}{X(z)} \frac{dX(z)}{dx} = \frac{X'(z)}{X(z)} \quad (\text{equation 13.21})$$

Using the z-transform property which states that

$$-z \frac{d\hat{X}(z)}{dz} = \text{"z - transform" of } [n\hat{x}(n)],$$

we can obtain the following relation:

$$-n\hat{x}(n) = \frac{1}{2\pi j} \oint_C \frac{zX'(z)}{X(z)} z^{n-1} dz$$

where the contour of integration C can be the unit circle.

$$\text{For } n \neq 0, \hat{x}(n) = -\frac{1}{2\pi j n} \oint_C \frac{z X'(z)}{X(z)} z^{n-1} dz.$$

For  $n=0$ , we can find  $\hat{x}(0)$  using

$$\hat{x}(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{X}(e^{j\omega}) d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log |X(e^{j\omega})| d\omega + j \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} \arg[X(e^{j\omega})] d\omega}_0.$$

### Method 2

Since  $\hat{X}'(z) = \frac{X'(z)}{X(z)}$ , we can write

$$z \hat{X}'(z) X(z) = z X'(z).$$

The inverse z-transform of the left hand side can be expressed as  $[-n \hat{x}(n)] * x(n)$ .

The inverse z-transform of the right hand side can be expressed as  $-nx(n)$ .

Therefore, we can write  $x(n)$  as

$$x(n) = \sum_{k=-\infty}^{\infty} \left( \frac{k}{n} \right) \hat{x}(k) x(n-k), \quad n \neq 0. \quad \text{(equation 13.26)}$$

Later, we will show that by imposing additional constraints, this above can be rearranged to solve<sup>13</sup> for  $\hat{x}(n)$  in terms of  $x(n)$ .

### Complex Cepstrum for Exponential Signals

Consider the special case where  $X(z)$  can be expressed in the form:

$$X(z) = \frac{Az^r \prod_{k=1}^{M_i} (1 - a_k z^{-1}) \prod_{k=1}^{M_o} (1 - b_k z)}{\prod_{k=1}^{N_i} (1 - c_k z^{-1}) \prod_{k=1}^{N_o} (1 - d_k z)} \quad (\text{equation 13.29})$$

where  $|a_k|, |b_k|, |c_k|, \text{ and } |d_k| < 1$ . Note that the  $a_k$  and  $c_k$  correspond to roots inside the unit circle while  $b_k$  and  $d_k$  represent roots outside the unit circle.

Then

$$\hat{X}(z) = \log(A) + \log(z^r) + \sum_{k=1}^{M_i} \log(1 - a_k z^{-1}) + \sum_{k=1}^{M_o} \log(1 - b_k z) - \sum_{k=1}^{N_i} \log(1 - c_k z^{-1}) - \sum_{k=1}^{N_o} \log(1 - d_k z). \quad (\text{equation 13.30})$$

Now consider the case where  $r = 0$  and  $A = |A|$ . (We can obtain this condition by shifting  $x(n)$  and multiplying by -1, if necessary.)

Therefore,  $\log A = \log |A|$  and  $\log(z^r) = 0$ .

Now consider the other terms of  $\hat{X}(z) = \log X(z)$ :

$$\log(1 - \alpha z^{-1}) = -\sum_{n=1}^{\infty} \frac{\alpha^n}{n} z^{-n}, \quad \text{for } |\alpha z^{-1}| < 1, \text{ or } |z| > \alpha \quad (\text{equation 13.34})$$

and

$$\log(1 - \beta z) = -\sum_{n=1}^{\infty} \frac{\beta^n}{n} z^n, \quad \text{for } |\beta z| < 1, \text{ or } |z| < \frac{1}{\beta}. \quad (\text{equation 13.35})$$

Therefore,

$$\begin{aligned} \hat{X}(z) &= \log |A| + \sum_{k=1}^{M_i} \left( -\sum_{n=1}^{\infty} \frac{a_k^n}{n} z^{-n} \right) + \sum_{k=1}^{M_o} \left( -\sum_{n=1}^{\infty} \frac{b_k^n}{n} z^n \right) - \sum_{k=1}^{N_i} \left( -\sum_{n=1}^{\infty} \frac{c_k^n}{n} z^{-n} \right) - \sum_{k=1}^{N_o} \left( -\sum_{n=1}^{\infty} \frac{d_k^n}{n} z^n \right) \\ &= \log |A| + \sum_{n=1}^{\infty} \left( -\sum_{k=1}^{M_i} \frac{a_k^n}{n} + \sum_{k=1}^{N_i} \frac{c_k^n}{n} \right) z^{-n} + \sum_{n=1}^{\infty} \left( -\sum_{k=1}^{M_o} \frac{b_k^n}{n} + \sum_{k=1}^{N_o} \frac{d_k^n}{n} \right) z^n. \end{aligned}$$

In the second outer summation, replace  $n$  with  $-n$  and adjust limits accordingly:

$$= \log |A| + \sum_{n=1}^{\infty} \left( -\sum_{k=1}^{M_i} \frac{a_k^n}{n} + \sum_{k=1}^{N_i} \frac{c_k^n}{n} \right) z^{-n} + \sum_{n=-1}^{-\infty} \left( \sum_{k=1}^{M_o} \frac{b_k^{-n}}{n} - \sum_{k=1}^{N_o} \frac{d_k^{-n}}{n} \right) z^{-n}.$$

By comparing the above expression for  $\hat{X}(z)$  with the general expression for the z-transform of  $\hat{x}(n)$  that is,  $\hat{X}(z) = \sum_{n=-\infty}^{\infty} \hat{x}(n)z^{-n}$ , we see that  $\hat{x}(n)$  can be expressed as:

$$\hat{x}(n) = \begin{cases} \log |A|, & n = 0 \\ -\sum_{k=1}^{M_i} \frac{a_k^n}{n} + \sum_{k=1}^{N_i} \frac{c_k^n}{n}, & n > 0 \\ \sum_{k=1}^{M_o} \frac{b_k^{-n}}{n} - \sum_{k=1}^{N_o} \frac{d_k^{-n}}{n}, & n < 0 \end{cases}$$

(equation 13.36 (a))

(equation 13.36 (b))

(equation 13.36 (c))

Call the above approach Method 3 for finding  $\hat{x}(n)$ .