ECE 8440 Unit 21

Cepstral Analysis and Homomorphic Deconvolution

Recall the general representation of a linear system:

X(0)oeeeeeeeee RNt A S— > y(n)

A linear system exhibits the following superposition property:

T{x,(n) + x,(n)} = T{x,(n)} + T{x,(n)}
and also

T{cx(n)} = cT{x(n)}

where c is any scalar.

We now generalize to the case of homomorphic systems, which obey a general principal of
superposition:

Hix,(n) o x,(n)} = H{x,(n)} o H{x,(n)}
where” B” s an operation for combining inputs and " © " is an operation for combining
outputs. The homomorphic system also satisfies

Hic: x(n)} =c 1 H{x(n)}

where " :" is an operation for combining inputs with scalers and " 1" is an operation for
combining outputs with scalars.
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The following figure provides a block diagram representation for a homomorphic system:

O 0 Representation of a system

— W] satistying generalized superposition with
x [n] y[n] 1nput operation o, output operation o,
and system transformation H.

For the special case where ©and o represent addition and : and t represent
multiplication, the system is linear.

The following is called a "canonic" representation of a homomorphic system:

dm)

Canonic representation of homomorphic systems.
«

The subsystem Dy is called the characteristic system for the operation P , since it
converts inputs combined by the operation o to a signal whose components are
combined by addition.

The subsystem D;' is called the inverse characteristic system for the operation o

since it converts inputs combined by addition to a signal whose components are
combined by the operation o .




Consider the canonic representation for a system for which the input operation is convolution (*)
and the output operation is also convolution (*).

* + + + o+ *
3> D, > L ————> D;1 e
x[n] x[n] yin] yIn]

Figure 13.6 Canonic form for homomorphic systems where inputs and
corresponding outputs are combined by convolution.

If x(n) = x,(n) * x,(n)
then g(n) = %.(n) +X,(n). < >homomorphic deconvolution

The output of the system D« is called the complex cepstrum of the input signal x(n).

Also, Y(N) =¥,(n)+y,(n)«___. > linear filtering of deconvolved signal

and y(n)=y,(n)*y,(n)<--—---> puts output signal in "original form"



How to implement the characteristic system for convolution, D,:
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(a)

First box (applying z-transform or Fourier transform)
Input: x(n) = x,(n) * x,(n) Output: X(z) = X,(2)X,(2)

Second box (applying complex logarithm)
Input: X(z) = X,(2)X,(2) Output: f((z) = 5(1(2) + 5(2(2)

Third box (applying inverse z-transform)
Input: X(z) = X,(2) + X,(2) Output: X(n) = X,(n) +X,(n),




How to implement the inverse characteristic system for convolution, D;':

+ | —1| .
| oot ° |
> ztransform x> Complex »| Inverse i
yin] Y(z) |exponential| () | ztransform | y’[n]
| |
oo |
Dy (-]

Input: y(n) =y,(n)+Yy,(n)
Output of first box (applying z-transform): Y(z) = Y,(z) + ¥,(2)

Output of second box (applying complex exponentiation):

Y(2)+Y. Y,@),Y.
Y(z) = "D = W% 2 ¥ (2)Y,(2)

Output of third box (applying inverse z-transform): y(n) = y,(n) *y,(n)

Now consider the linear part of the canonical system for convolution:

Example:
If  Xx,(n)=0fornxn,

and X,(n)=0forn<n,



then a linear system which can remove %, (n) from the combined signal x.(n) + X, (n),
leaving x,(n), is: y(n) = £(n)x(n) Where

1 n<n
(n)=]" 0
(n) {O, nn,.

This is a linear frequency-invariant filter and is often called a "lifter" instead of a filter.
The index n of y(n) is called the "quefrency" index.
In the above example, the output of the lifter is y(n) =x,(n).

The corresponding frequency domain operation of the lifter system is

V() = 5 [ X(@)L(e)do.

Section 13.2 Definition of the Complex Cepstrum

Assume that x(n) is a "stable signal" (so that the region of convergence of X(z) includes the unit
circle in the z-plane).

Now let X(z) =logX(z) (equation 13.9)
If X(z) can be also represented in a power series of the form

co

X(z)= Y x(n)z™"

N=—o

which converges forlzl =1, then x(n) is defined as the complex cepstrum of x(n).




The sequence x(n) could be found from X(z) = logX(z) via the inverse z-transform:

%(n) = Zimgflog X(2)2"'dz

where the integration contour C can be the unit circle.

Since the contour C can be chosen as the unit circle in the z-plane, it can also be expressed in
terms of the inverse DTFT:

X = i [ j®yajen
x(n) = > __fnlog X(e™)e*"dw
-I T i® . i® ion )
=E‘f[log | X(e™)) 1 +j argX(e' )]eJ do. (equation 13.13)
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Note that the complex log is used, since X(e¥) can in general be complex.

Note: Despite its name, the "complex cepstrum" is not necessarily complex-valued. In fact, if a
signal is real, its complex cepstrum will also be real, as shown below:

If x(n) is real, then arg[X(e*)] is an odd function of @ and IX(e*) | is an_even function of .

Therefore, log| X(e®)| is also an even function. Itis also true that
IDTFT{log | X(e*®) | +jarg[X(e!®)1} is real, as shown below:




Zi ]E {flog | X(e*) | +jarg[X(e*)]}e"" dw

% _[ flogl X(e™) | +jarg[X(e*)]}{cos wn + jsin on}dw

Zi _f log | X(e/®)) | cos wn — arg[X(e*)]sin on}dw

WhICh is real. (The imaginary part of the integral is zero because the integration of odd functions
over a symmetric range of values, centered at =0, is equal to 0.)

Therefore, if x(n) is real (and stable), then the complex cepstrum X(n) will also be real (if it exists).

Section 13.3 Properties of the Complex Log

Consider a stable x(n). In order forx(n) to exist, it is necessary and sufficient that the region of
convergence of X(z) = logX(z) include the unit circle. (This follows from the definition of x(n).)

If X(n) exists, then

X(e*) =log | X(e®) | + j arg[X(e™)]. (equation 13.16)

Both log | X(e®) | and arg[X(e®)] must be continuous functions, since X(z)is analytic within its
region of convergence, and X(ek) is equal to X(z) on the unit circle.




Now consider the evaluation of arg[X(e*)]. Most computer routines produce ARG[X(e!®)],
the "principal value" of the log, which satisfies

—nt < ARG[X(e**)] < =.
The relation between ARG[X(e/®)] and the "true phase ” arg[X(e*)] is
arg[X(e*)] = ARG[X(e**)] + 2xnr(w)

where r(w) is always integer-valued. Therefore, to find the true arg[X(e/®)] it is necessary to
"unwrap ”“ARG[X(e™)]. This can be seen from the figure below:

argl X(el*)]
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-7 \ N / / ’ (a) Typical phase curve for
a z-transform evaluated on the unit
circle. (b) Principal value of the phase in
(b) part ().
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If X(e/*) = X,(e/*)X,(e)*), then in order to evaluate the cepstrum we want
X(e®) = X,(e) + X, (e1®).
We will have this relation between X(€/®), X,(€’®), andX,(e!®) if arg[X(e’)] is used in

evaluatinglogX(e®) . However, this relation will not necessarily be present ifARG[X(e*)]is used in
evaluatinglogX(e™).

Example:

arg[X,(e®)] = -100° ARG[X,(e)] = ~100°
arg[X,(e*)]=-150° ARG[X,(e*)]=-150°
arg[X(e)] =-250° ARG[X(e*)]=110°

Now define the "real cepstrum' as

c (n)= 1 | [Iog | X(e™) I} el"da. (equation 13.14)
2m

If x(n) is real, | X(e/®) | and log|X(e*)| are even, and thereforec, (n)is real.
Since ¢, (n) is the DTFT pair with Re{X(e}®)}, we know that
c,(n) ="conjugate symmetric" part of X(n), that is:

¢, (n) =X = (n), (equation 13.15)
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Note: c (n) is easier to compute than x(n), since it does not involve the complex part of the log.

Note: The original signal x(n) cannot be completely recovered from c_(n).

Calculating the Complex Cepstrum Without Calculating the Complex Log
Method 1:

Consider x(n), the complex cepstrum of x(n).

The z-transform of x(n)is X(z) = log X(z).

Since X(n) is stable, the region of convergence of X(z)includes the unit circle.

Therefore, X(z) is analytic on the unit circle. This means that X(z) and all its derivatives are
continuous on the unit circle.

Now consider the derivative of X(z):

Sy d 1 dX(2) _ X'(2) :
X'(z) = = logX(z) = X@) dx = X(2) (equation 13.21)

Using the z-transform property which states that

4 d)((j(zz) ="z - transform" of [nx(n)],

we can obtain the following relation:

1 (ﬁzX'(Z)Zn_HZ

-X(M)=5 P X(@@)
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where the contour of integration C can be the unit circle.
ZX'(2) n14,.

- 1
0 = -
Forn=0, x(n) anni’, X(2)

For n=0, we can find x(0) using

sy = V[ aio _ 17 jo 17 jo
x(0) = 2n__[tX(e Ydw 2n__[logIX(e )Idw+12n_J;arg[X(e )]dw.

0
Method 2

Since X'(z) = X (2)

, We can write

zX'(2)X(z) = 2X'(2).

The inverse z-transform of the left hand side can be expressed as[—nx(n)]*x(n).

The inverse z-transform of the right hand side can be expressed as —nx(n).
Therefore, we can write x(n) as

)

x(n)= Y [E}?(k)x(n -k), n=z0. (equation 13.26)

k=—oo
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. . . o\ . . 13
Later, we will show that by imposing additional constraints, this above can be rearranged to solve
for x(n) in terms of x(n).
Complex Cepstrum for Exponential Signals

Consider the special case where X(z) can be expressed in the form:

M M
AZTI(1-a z )[[(1-b,z) .
X(2) = NE ) Ng X (equation 13.29)
[[0-¢cz " [(1-d,2)
k=1 k=1

wherela_ l,Ib _l,Ic l,andld, | <1. Notethatthe a_ and c, correspond to roots inside the unit
circle while b, and d represent roots outside the unit circle.

Then
Mi Mo Ni No
X(z) =log(A) +log(z") + Y log(1-a,z™") + Y log(1-b,z) -, log(1-c,z™")- Y log(1-d,2).
k=1 k=1 k=1 k=1

(equation 13.30)

Now consider the case wherer=0and A= |Al. (We can obtain this condition by shifting x(n)
and multiplying by -1, if necessary.)

Therefore, logA =logl Al and log(z") = 0.



Now consider the other terms of X(z) = log X(z): 14

log(1- 0z ) = -3 %z forloz'| <1, orlzl > a (equation 13.34)

n=1

and

A B 1
log(1-B2z) = n2=1' ~z", for Izl <1, orlzl < 5 (equation 13.35)

Therefore,
R M < gn M, > pb" N; = N N0 S
X(z)=logl AT+Y | =Y Xz [+ 3| -Y kz" (-3 - Kz =Y kg
k=1 n=1 N k=1 =1 N k=1 n=1 N k=1\ =1 N
M N n M n N n
had i i C had (o] b o d
=|ogIAI+Z Ky Y-y Y kg,
k=1 k=1 n =l k= N e n
In the second outer summation, replace n with -n and adjust limits accordingly:
oo —o | M —n N d—n
=loglAl+) -] "+2 DY 2 b, 2 L
n=1| k=1 k=1 N n=—1| k=1 =

By comparing the above expression for X(z) with the general expression for the z-transform of x(n)
thatis, X(z)= Y x(n)z™", we see that x(n) can be expressed as:

N=—o



N
. Lal
x(n)=<—ZF"+2F, n>0
k=1
NO

k
M
0
) , n<0
n n

Call the above approach Method 3 for finding x(n).

(equation 13.36 (a))

(equation 13.36 (b))

(equation 13.36 (c))
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