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Cepstral	
  Analysis	
  and	
  Homomorphic	
  Deconvolu7on	
  
Recall	
  the	
  general	
  representa7on	
  of	
  a	
  linear	
  system:	
  
	
  
	
  
	
  
	
  
A	
  linear	
  system	
  exhibits	
  the	
  following	
  superposi7on	
  property:	
  
	
  
and	
  also	
  
	
  
where	
  c	
  is	
  any	
  scalar.	
  	
  
	
  
We	
  now	
  generalize	
  to	
  the	
  case	
  of	
  homomorphic	
  systems,	
  which	
  obey	
  a	
  general	
  principal	
  of	
  
superposi7on:	
  
	
  
where	
  ”	
  	
  	
  	
  	
  ”	
  	
  	
  is	
  an	
  opera7on	
  for	
  combining	
  inputs	
  and	
  "	
  	
  	
  	
  	
  	
  "	
  is	
  an	
  opera7on	
  for	
  combining	
  
outputs.	
  	
  The	
  homomorphic	
  system	
  also	
  sa7sfies	
  
	
  	
  
	
  
where	
  "	
  :"	
  is	
  an	
  opera7on	
  for	
  combining	
  inputs	
  with	
  scalers	
  and	
  "	
  	
  	
  	
  "	
  is	
  an	
  opera7on	
  for	
  
combining	
  outputs	
  with	
  scalars.	
  
	
  
	
  

 T{x1(n) + x2(n)} = T{x1(n)} + T{x2(n)}

 T{cx(n)} = cT{x(n)}

H{x1(n)  x2(n)} = H{x1(n)}H{x2(n)}

H{c : x(n)} = c ι H{x(n)}

 

ι
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The	
  following	
  figure	
  provides	
  a	
  block	
  diagram	
  representa7on	
  for	
  a	
  homomorphic	
  system:	
  

For	
  the	
  special	
  case	
  where	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  represent	
  addi7on	
  and	
  :	
  and	
  	
  	
  	
  represent	
  	
  
mul7plica7on,	
  the	
  system	
  is	
  linear.	
  	
  	
  	
  

    ι

The	
  following	
  is	
  called	
  a	
  "canonic"	
  representa7on	
  of	
  a	
  homomorphic	
  system:	
  

The	
  subsystem	
  D	
  	
  	
  is	
  called	
  the	
  characteris7c	
  system	
  for	
  the	
  opera7on	
  	
  	
  	
  	
  ,	
  since	
  it	
  
converts	
  inputs	
  combined	
  by	
  the	
  opera7on	
  	
  	
  	
  	
  to	
  a	
  signal	
  whose	
  components	
  are	
  
combined	
  by	
  addi7on.	
  	
  	
  	
  	
  	
  	
  	
  

 

 
 

The	
  subsystem	
  	
  	
  	
   is	
  called	
  the	
  inverse	
  characteris7c	
  system	
  for	
  the	
  opera7on	
  o	
  
since	
  it	
  converts	
  inputs	
  combined	
  by	
  addi7on	
  to	
  a	
  signal	
  whose	
  components	
  are	
  
combined	
  by	
  the	
  opera7on	
  	
  	
  	
  	
  .	
  

 Do
−1

 
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Consider	
  the	
  canonic	
  representa7on	
  for	
  a	
  system	
  for	
  which	
  the	
  input	
  opera7on	
  is	
  convolu7on	
  (*)	
  
and	
  the	
  output	
  opera7on	
  is	
  also	
  convolu7on	
  (*).	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
then	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <-­‐-­‐-­‐-­‐-­‐-­‐>	
  homomorphic	
  deconvolu7on	
  
	
  
The	
  output	
  of	
  the	
  system	
  D*	
  is	
  called	
  the	
  complex	
  cepstrum	
  of	
  the	
  input	
  signal	
  x(n).	
  
	
  
Also,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <-­‐-­‐-­‐-­‐-­‐-­‐>	
  linear	
  filtering	
  of	
  deconvolved	
  signal	
  
	
  
and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <-­‐-­‐-­‐-­‐-­‐-­‐>	
  puts	
  output	
  signal	
  in	
  "original	
  form"	
  
	
  
	
  
	
  
	
  

 x(n) = x1(n) * x2(n)

x̂(n) = x̂1(n) + x̂2(n).

 ̂y(n) = ŷ1(n) + ŷ2(n)

 y(n) = y1(n) * y2(n)
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Figure	
  13.6	
  	
  Canonic	
  form	
  for	
  homomorphic	
  systems	
  where	
  inputs	
  and	
  
corresponding	
  outputs	
  are	
  combined	
  by	
  convolu7on.	
  	
  	
  



How	
  to	
  implement	
  the	
  characteris7c	
  system	
  for	
  convolu7on,	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
	
  
	
  
	
  
	
  
First	
  box	
  (applying	
  z-­‐transform	
  or	
  Fourier	
  transform)	
  	
  
Input:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  Output:	
  	
  
	
  	
  
Second	
  box	
  (applying	
  complex	
  logarithm)	
  
Input:	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Output:	
   	
  	
  	
  
	
  
Third	
  box	
  (applying	
  inverse	
  z-­‐transform)	
  
Input:	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Output:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
	
  

 D*

 x(n) = x1(n) * x2(n)  X(z) = X1(z)X2(z)

 X(z) = X1(z)X2(z)  ̂X(z) = X̂1(z) + X̂2(z)

 ̂X(z) = X̂1(z) + X̂2(z)  ̂x(n) = x̂1(n) + x̂2(n)
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How	
  to	
  implement	
  the	
  inverse	
  characteris7c	
  system	
  for	
  convolu7on,	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Input:	
  	
  	
  	
  	
  	
  	
  	
  
Output	
  of	
  first	
  box	
  (applying	
  z-­‐transform):	
  	
  	
  
Output	
  of	
  second	
  box	
  (applying	
  complex	
  exponen7a7on):	
   	
  	
  

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
Output	
  of	
  third	
  box	
  (applying	
  inverse	
  z-­‐transform):	
  	
  	
  	
  
	
  
Now	
  consider	
  the	
  linear	
  part	
  of	
  the	
  canonical	
  system	
  for	
  convolu7on:	
  
	
  
Example:	
  	
  	
  
If	
  	
  	
  	
  	
  	
   	
  	
  	
  
and	
   	
  	
  
	
  
	
  

 D*
−1

 ̂y(n) = ŷ1(n) + ŷ2(n)

 ̂Y(z) = Ŷ1(z) + Ŷ2(z)

 Y(z) = eŶ1(z)+ Ŷ2(z) = eŶ1(z)eŶ2(z) = Y1(z)Y2(z)

 y(n) = y1(n) * y2(n)

 ̂x1(n) = 0 for n ≥ n0

 ̂x2(n) = 0 for n < n0
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then	
  a	
  linear	
  system	
  which	
  can	
  remove	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  from	
  the	
  combined	
  signal	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  
	
  leaving	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  is:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  where	
  	
  	
  
	
  
	
  
	
  
This	
  is	
  a	
  linear	
  frequency-­‐invariant	
  filter	
  and	
  is	
  o[en	
  called	
  a	
  "li[er"	
  instead	
  of	
  a	
  filter.	
  
The	
  index	
  n	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  called	
  the	
  "quefrency"	
  index.	
  
In	
  the	
  above	
  example,	
  	
  the	
  output	
  of	
  the	
  li[er	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
The	
  corresponding	
  frequency	
  domain	
  opera7on	
  of	
  the	
  li[er	
  system	
  is	
  
	
  
	
  
Sec7on	
  13.2	
  Defini7on	
  of	
  the	
  Complex	
  Cepstrum	
  
	
  
Assume	
  that	
  x(n)	
  is	
  a	
  "stable	
  signal"	
  (so	
  that	
  the	
  region	
  of	
  convergence	
  of	
  X(z)	
  	
  includes	
  the	
  unit	
  
circle	
  in	
  the	
  z-­‐plane).	
  	
  	
  
Now	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  	
  	
  	
  	
  	
  	
  
If	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  also	
  represented	
  in	
  a	
  power	
  series	
  of	
  the	
  form	
  	
  
	
  
	
  
which	
  converges	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  then	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  defined	
  as	
  the	
  complex	
  cepstrum	
  of	
  x(n).	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

 ̂x2(n)  ̂x1(n) + x̂2(n)

 ̂x1(n)   ̂y(n) = (n)x̂(n)

(n) =
1,     n < n0
0,     n ≥ n0.

⎧
⎨
⎪

⎩⎪

 ̂y(n)
 ̂y(n) = x̂1(n)

Ŷ(ejω) = 1
2π X̂(ejω)

−π

π

∫ L(ej(ω−θ))dθ.

 ̂X(z) = logX(z)

 ̂X(z)

 
X̂(z) = x̂(n)

n=−∞

∞

∑ z−n

  | z |  = 1  ̂x(n)
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(equa7on	
  13.9)	
  



	
  
The	
  sequence	
  	
  	
  	
  	
  	
  	
  	
  	
  could	
  be	
  found	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  via	
  the	
  inverse	
  z-­‐transform:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
where	
  the	
  integra7on	
  contour	
  C	
  can	
  be	
  the	
  unit	
  circle.	
  	
  	
  
	
  
Since	
  the	
  contour	
  C	
  can	
  be	
  chosen	
  as	
  the	
  unit	
  circle	
  in	
  the	
  z-­‐plane,	
  it	
  can	
  also	
  be	
  expressed	
  in	
  
terms	
  of	
  the	
  inverse	
  DTFT:	
  
	
  
	
  
	
  
	
  
Note	
  that	
  the	
  complex	
  log	
  is	
  used,	
  since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  in	
  general	
  be	
  complex.	
  
	
  
Note:	
  Despite	
  its	
  name,	
  the	
  "complex	
  cepstrum"	
  is	
  not	
  necessarily	
  complex-­‐valued.	
  	
  In	
  fact,	
  if	
  a	
  
signal	
  is	
  real,	
  its	
  complex	
  cepstrum	
  will	
  also	
  be	
  real,	
  as	
  shown	
  below:	
  
	
  
If	
  x(n)	
  is	
  real,	
  then	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  an	
  odd	
  func7on	
  of	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  an	
  even	
  func7on	
  of	
  	
  	
  	
  .	
  	
  	
  	
  
	
  
Therefore,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  also	
  an	
  even	
  func7on.	
  	
  It	
  is	
  also	
  true	
  that	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  real,	
  as	
  shown	
  below:	
  
	
  
	
  
	
  
	
  
	
  
	
  

 ̂x(n)  ̂X(z) = logX(z)

  
x̂(n) = 1

2πj
logX(z)

C
∫ zn−1dz

 
x̂(n) = 1

2π
l ogX(ejω )ejωn

−π

π

∫ dω

 
= 1

2π
l og | X(ejω )) | + j argX(ejω )⎡
⎣

⎤
⎦e

jωn

−π

π

∫ dω.

 X(ejω )

 arg[X(ejω )] ω  l X(ejω ) | ω

 log | X(ejω ) |

 IDTFT{log | X(ejω) | + jarg[X(ejω)]}
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(equa7on	
  13.13)	
  



	
  
	
  
	
  
	
  
	
  
which	
  is	
  real.	
  	
  (The	
  imaginary	
  part	
  of	
  the	
  integral	
  is	
  zero	
  because	
  the	
  integra7on	
  of	
  odd	
  func7ons	
  
over	
  a	
  symmetric	
  range	
  of	
  	
  values,	
  	
  centered	
  at	
  	
  =	
  0,	
  is	
  equal	
  to	
  0.)	
  
	
  
Therefore,	
  if	
  x(n)	
  is	
  real	
  (and	
  stable),	
  then	
  the	
  complex	
  cepstrum	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  will	
  also	
  be	
  real	
  (if	
  it	
  exists).	
  	
  
	
  
Sec7on	
  13.3	
  Proper7es	
  of	
  the	
  Complex	
  Log	
  	
  
Consider	
  a	
  stable	
  x(n).	
  	
  In	
  order	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  exist,	
  it	
  is	
  necessary	
  and	
  sufficient	
  that	
  the	
  region	
  of	
  
convergence	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  include	
  the	
  unit	
  circle.	
  	
  (This	
  follows	
  from	
  the	
  defini7on	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  .)	
  	
  	
  
If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  exists,	
  then	
  	
  
	
  
	
  
Both	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  must	
  be	
  con7nuous	
  func7ons,	
  since	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  analy7c	
  within	
  its	
  
region	
  of	
  convergence,	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  equal	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  on	
  the	
  unit	
  circle.	
  
	
  
	
  
	
  
	
  

 

1
2π

{log | X(ejω ) | + j arg[X(ejω )]}ejωn dω
−π

π

∫

 
= 1

2π
{log | X(ejω ) | + j arg[X(ejω )]}{cosωn + j sinωn}

−π

π

∫ dω

 
= 1

2π
{log | X(ejω )) | cosωn − arg[X(ejω )]sinωn}

−π

π

∫ dω

 ̂x(n)

 ̂x(n)

 ̂X(z) = logX(z)  ̂x(n)

X̂(ejω) = log | X(ejω) | + j arg[X(ejω)].

 log | X(ejω ) |  arg[X(ejω )]  ̂X(z)
X̂(ejω)  ̂X(z)

 ̂x(n)
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(equa7on	
  13.16)	
  



Now	
  consider	
  the	
  evalua7on	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  Most	
  computer	
  rou7nes	
  produce	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  
the	
  "principal	
  value"	
  of	
  the	
  log,	
  which	
  sa7sfies	
  
	
  
The	
  rela7on	
  between	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  the	
  "true	
  phase	
  ”	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  is	
  always	
  integer-­‐valued.	
  	
  Therefore,	
  to	
  find	
  the	
  true	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  it	
  is	
  necessary	
  to	
  
"unwrap	
  	
  	
  ”	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  This	
  can	
  be	
  seen	
  from	
  the	
  figure	
  below:	
  
	
  
	
  
	
  
	
  

 arg[X(ejω )]  ARG[X(ejω )]

−π ≤ ARG[X(ejω)] ≤ π.
 ARG[X(ejω )]  arg[X(ejω )]

 arg[X(ejω )] = ARG[X(ejω )] + 2πr(ω)

  r(ω)  arg[X(ejω )]
 ARG[X(ejω )]

9	
  



If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  then	
  in	
  order	
  to	
  evaluate	
  the	
  cepstrum	
  we	
  want	
  
	
  
	
  
We	
  will	
  have	
  this	
  rela7on	
  between	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  used	
  in	
  
evalua7ng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  However,	
  this	
  rela7on	
  will	
  not	
  necessarily	
  be	
  present	
  if	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  used	
  in	
  
evalua7ng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
Example:	
  
	
  
	
  
	
  
Now	
  define	
  the	
  "real	
  cepstrum"	
  as	
  
	
  
	
  
If	
  x(n)	
  is	
  real,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  even,	
  and	
  therefore	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  real.	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  DTFT	
  pair	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  we	
  know	
  that	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  "conjugate	
  symmetric"	
  part	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  that	
  is:	
  
	
  
	
  
	
  
	
  	
  
	
  

 X(ejω) = X1(ejω)X2(ejω)
X̂(ejω) = X̂1(ejω) + X̂2(ejω).

 ̂X(ejω )  ̂X1(ejω )  ̂X2(ejω )  arg[X(ejω )]

 logX(ejω )   ARG[X(ejjω)]

 logX(ejω )

arg[X1(ejω)] = −100°               ARG[X1(ejω)] = −100°

cx(n) =
1
2π

log | X(ejω) |⎡
⎣

⎤
⎦e

jωn

−π

π

∫ dω.

 | X(ejω ) |  log | X(ejω) |  cx(n)

 cx(n)  Re{X̂(ejω )}
 cx(n)  ̂x(n)

cx(n) =
x̂(n) + x̂*(−n)

2
.
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(equa7on	
  13.14)	
  

(equa7on	
  13.15)	
  

arg[X2(ejω)] = −150°               ARG[X2(ejω)] = −150°
arg[X(ejω)] = −250°               ARG[X(ejω)] =110°



Note:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  easier	
  to	
  compute	
  than	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  since	
  it	
  does	
  not	
  involve	
  the	
  complex	
  part	
  of	
  the	
  log.	
  
Note:	
  	
  The	
  original	
  signal	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cannot	
  be	
  completely	
  recovered	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
Calcula1ng	
  the	
  Complex	
  Cepstrum	
  Without	
  Calcula1ng	
  the	
  Complex	
  Log	
  
Method	
  1:	
  
Consider	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  complex	
  cepstrum	
  of	
  x(n).	
  	
  	
  	
  
The	
  z-­‐transform	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  stable,	
  the	
  region	
  of	
  convergence	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  includes	
  the	
  unit	
  circle.	
  	
  	
  
Therefore,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  analy7c	
  on	
  the	
  unit	
  circle.	
  	
  This	
  means	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  all	
  its	
  deriva7ves	
  are	
  
con7nuous	
  on	
  the	
  unit	
  circle.	
  
	
  
Now	
  consider	
  the	
  deriva7ve	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
Using	
  the	
  z-­‐transform	
  property	
  which	
  states	
  that	
  
	
  
	
  
we	
  can	
  obtain	
  the	
  following	
  rela7on:	
  
	
  
	
  
	
  
	
  
	
  

 cx(n)  ̂x(n)

 x(n)  cx(n)

 ̂x(n)

 ̂x(n)  ̂X(z) = logX(z)

 ̂x(n)  ̂X(z)

 ̂X(z)  ̂X(z)

 ̂X(z)

 
X̂ '(z) = d

dz
logX(z) = 1

X(z)
dX(z)

dx
= X '(z)

X(z)

 
−z dX̂(z)

dz
= "z − transform" of [nx̂(n)],

  
−nx̂(n)= 1

2πj
zX '(z)
X(z)C

∫ zn−1dz
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(equa7on	
  13.21)	
  



where	
  the	
  contour	
  of	
  integra7on	
  C	
  can	
  be	
  the	
  unit	
  circle.	
  
For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
For	
  n=0	
  ,	
  we	
  can	
  find	
  	
  	
  	
  	
  	
  	
  	
  	
  using	
  
	
  
	
  
	
  
Method	
  2	
  	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  we	
  can	
  write	
  
	
  
	
  
	
  
The	
  inverse	
  z-­‐transform	
  of	
  the	
  le[	
  hand	
  side	
  can	
  be	
  expressed	
  as	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
The	
  inverse	
  z-­‐transform	
  of	
  the	
  right	
  hand	
  side	
  can	
  be	
  expressed	
  as	
  	
  –nx(n).	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  
Therefore,	
  we	
  can	
  write	
  x(n)	
  as	
  
	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa7on	
  13.26)	
  
	
  
	
  
	
  
	
  

 n ≠ 0 x̂(n)= - 1
2πjn

zX '(z)
X(z)C

∫ zn−1dz.

 ̂x(0)

x̂(0) =  1
2π

X̂(ejω)dω
-π

π

∫   =  1
2π

log | X(ejω) | dω
-π

π

∫ + j 1
2π

arg[X(ejω)]dω
-π

π

∫
0

  

.

 
X̂ '(z) = X '(z)

X(z)

zX̂ '(z)X(z) = zX '(z).

 [−nx̂(n)]*x(n)

x(n) = k
n

⎛

⎝⎜
⎞

⎠⎟k=−∞

∞

∑ x̂(k)x(n − k),     n ≠ 0.
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Later,	
  we	
  will	
  show	
  that	
  by	
  imposing	
  addi7onal	
  constraints,	
  this	
  above	
  can	
  be	
  rearranged	
  to	
  solve	
  
	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  terms	
  of	
  x(n).	
  	
  	
  
Complex	
  Cepstrum	
  for	
  Exponen7al	
  Signals	
  	
  
Consider	
  the	
  special	
  case	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  expressed	
  in	
  the	
  form:	
  
	
  
	
  
	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  Note	
  that	
  the	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  correspond	
  to	
  roots	
  inside	
  the	
  unit	
  	
  	
  
circle	
  while	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  represent	
  roots	
  outside	
  the	
  unit	
  circle.	
  
	
  
Then	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa7on	
  13.30)	
  
	
  
Now	
  consider	
  the	
  case	
  where	
  r	
  =	
  0	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  	
  (We	
  can	
  obtain	
  this	
  condi7on	
  by	
  shi[ing	
  x(n)	
  
and	
  mul7plying	
  by	
  -­‐1,	
  if	
  necessary.)	
  
	
  
Therefore,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  
	
  

 ̂x(n)

 X(z)

X(z) =
Azr (1− akz

−1) (1− bkz)
k=1

M
o

∏
k=1

M
i

∏

(1− ckz
−1) (1− dkz)

k=1

N
o

∏
k=1

N
i

∏

 | ak |,| bk |,| ck |,and | dk |  <1  ak  ck

 bk  dk

 
X̂(z) = log(A) + log(zr ) + log

k=1

Mi

∑ (1− akz
−1) + log

k=1

Mo

∑ (1− bkz) − log
k=1

N
i

∑ (1− ckz
−1) − log

k=1

N
o

∑ (1− dkz).

A =  | A |

 logA = log | A |  log(zr ) = 0
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  13.29)	
  



Now	
  consider	
  the	
  other	
  terms	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
and	
  
	
  
	
  
Therefore,	
  
	
  
	
  
	
  
	
  
	
  
In	
  	
  the	
  second	
  outer	
  summa7on,	
  replace	
  n	
  with	
  -­‐n	
  and	
  adjust	
  limits	
  accordingly:	
  
	
  
	
  
	
  
By	
  comparing	
  the	
  above	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  the	
  general	
  expression	
  for	
  the	
  z-­‐transform	
  of	
  	
  	
  	
  	
  	
  
that	
  is,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  we	
  see	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  expressed	
  as:	
  
	
  
	
  
	
  
	
  

 ̂X(z) = logX(z)

 
log(1− αz−1) = − αn

nn=1

∞

∑ z−n,      for |αz−1 |  <1 ,  or |z| > α

log(1− βz) = − βn

nn=1

∞

∑ zn,      for |βz |  <1 ,  or |z| < 1
β

.

 
X̂(z) = log | A | + −

ak
n

nn=1

∞

∑ z−n
⎛

⎝
⎜

⎞

⎠
⎟

k=1

Mi

∑ + −
bk

n

nn=1

∞

∑ zn
⎛

⎝
⎜

⎞

⎠
⎟

k=1

Mo

∑
 
− −

ck
n

nn=1

∞

∑ z−n
⎛

⎝
⎜

⎞

⎠
⎟

k=1

Ni

∑ − −
dk

n

nn=1

∞

∑ zn
⎛

⎝
⎜

⎞

⎠
⎟

k=1

No

∑

= log | A | + −
ak
n

nk=1

M
i

∑ +
ck
n

nk=1

N
i

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟n=1

∞

∑ z−n + −
bk

n

nk=1

M
o

∑ +
dk
n

nk=1

N
o

∑
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟n=1

∞

∑ zn.

= log | A | + −
ak
n

nk=1

M
i

∑ +
ck
n

nk=1

N
i

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟n=1

∞

∑ z−n +
bk

−n

nk=1

M
o

∑ −
dk

−n

nk=1

N
o

∑
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟n=−1

−∞

∑ z−n.

 ̂X(z)  ̂x(n)
X̂(z) = x̂(n)z−n

n=−∞

∞

∑ , x̂(n)
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(equa7on	
  13.34)	
  

(equa7on	
  13.35)	
  



	
  
	
  
	
  
	
  
	
  
	
  
Call	
  the	
  above	
  approach	
  Method	
  3	
  for	
  finding	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  

x̂(n) =

log | A |,     n = 0

−
ak

n

nk=1

M
i

∑ +
ck

n

nk=1

N
i

∑ ,    n > 0

bk
−n

nk=1

M
o

∑ −
dk

−n

nk=1

N
o

∑ ,   n < 0

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 ̂x(n)
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(equa7on	
  13.36	
  (a))	
  

(equa7on	
  13.36	
  (b))	
  

(equa7on	
  13.36	
  (c))	
  


