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Section 13.6.5 The Use of Exponential Weighting
Exponential weighting of a sequence x(n) is defined by
w(n) = a"x(n). (equation 13.69)
Exponential weighting can be used to avoid or lessen some of the problems involved with
evaluating the complex cepstrum x(n). Note that the z-transform of w(n) is

co

W(z)= Y w(n)z™"

N=—o0

= Y ax(n)z™"
N=—o0

= i X(”)(E] =X[§}- (equation 13.70)

N=—o0

If the Region of Convergence of X(z) is

< lzl <r

then the Region of Convergence of W(z) is

I

R <

o

<r_ , Wwhich can be also expressed as

ofr, < |2 <o,



. 4 jo
If X(z) has a pole or zero at Z=2, =1, | then W(z) has a pole of zero when o €, which

corresponds to Z= Otroejeo , Which has a radius of ar, and the same angle as the pole or zero of
X(z).

Note that the operation of exponential weighting commutes with the operation of convolution,
as shown below:

Assume that x(n) = x,(n) * x,(n) and let w(n) = a"x(n) .

=x[2]=x|2|x,[2
Then W(z) = X p” —X1[OJX2 aj' (equation 13.71)

Therefore,

w(n) = IDTFT [x1 [5)] * DTFT [xz [g]]

= a"x,(n) * a"x,(n)
=w,(n) *w,(n) (equation 13.72)

where w.(n) =a"x.,(n) and w,(n)=a"x,(n).
The frequency domain version of this is
W(z) = W,(2)W,(2) .

Therefore, in computing the complex cepstrum of w(n), which is the exponentially weighted
version of x(n), we have

W(z) = log[W(z)] = log[W,(2)] +log[W,(2)] and W(n) = W,(n) + W, (n). (equation 13.73)



Applications of exponential weighting 3

1. Moving poles and zeros off the unit circle, so that complex cepstrum can be calculated.

Because of the way the complex cepstrum is defined, it can exist only if the Region of
Convergence of X(z) and also of X(z) = log[X(z)] include the unit circle in the z-plane.

Poles of X(z) are also poles of X(z) = log[X(z)]

Zeros of X(z) become poles of X(z)because of the log operation. Therefore, if X(z) has any poles
or zeros on the unit circle, the complex cepstrum, as we have defined it, cannot exist.

The above situation can be remedied by exponential weighting, using o <1, to move any poles
and zeros which are on the unit circle to new locations inside the unit circle (keeping the angles
of the poles and zeros unchanged.)

2. Converting a non-minimum phase signal to a signal that is minimum-phase.

If z__ isthe largest magnitude of any of the poles and zeros of X(z) where z__ >1, we can
generate a minimum-phase version of x(n) by using exponential weighting,

w(n) = a"x(n)
where @ is chosen to satisfy lz ol <1.



3. Computing the complex cepstrum without computing the complex log (which would involve 4

phase unwrapping)
The exponentially weighted signal w(n) = a"x(n) has z-transformW(z) = X[éj. If the Region of
Convergence of X(z) is

r.< lzl <r,
then the Region of Convergence of W(z) is lalr, < Izl < lalr,
and the poles and zeros of X(z) are shifted radially by a factor of @,

If X(z) has no poles or zeros on the unit circle then @ can be chosen so that no poles or zeros of
X(z) move across the unit circle in forming W(z). Then, the Region of Convergence of W(z) will
also include the unit circle. (This is a necessary condition for its complex cepstrum to exit.)

Note that the poles of W(z) = log[W(z)] consist of the poles and zeros of W(z) and the Region of
Convergence of W(z) is given by

A< |zl <B

where A is the largest magnitude of the poles of W(z) which are inside the unit circle,and B is
the smallest magnitude of the poles of W(z) which are outside the unit circle.



Therefore, the Region of Convergence of W(z) includes the unit circle, which is another 5
necessary condition for the complex cepstrum w(n) to exist.

Since W(z) = logW(z) = |ogx[5] , the complex cepstrum of w(n) is
(0

w(n) = |DTFT[|ogx[EH = o" IDTFT[log X(2) | = o"%(n).

o
Now assume that instead of the complex cepstrum, we have calculated the real cepstrumc,(n).
For the case where x(n) is real, x(n),w(n), and w(n) will also be real. In this case, ¢ (n)is the even
part of x(n)and c,(n)is the even part of w(n). These relations can be expressed as

> equation *
w(n)+w(-n) a"x(n)+ o "X(-n) _
c,(n)= > = > . equation **

From equation * we can write
x(-n) = 2c_(n) - x(n)
Substituting the above expression for x(-n) into equation ** gives:

c. ()= a"x(n) + oc‘"[gcx(n) - X(n)]

2c,(n) = a"x(n) +a™"[2c (n)-x(n)]

2c, (n)—a™"2c (n) =x(n)[a" —a™]



2c, (n)—a™"2c (n) 6
[a" —a™]

_2a"c,(n)-2c (n)

- [ -1]

_2[c (n)-a"c, (n)]

- 1-o®"

x(n) =

x(n)

Possible difficulty: If X(z) has a pole or zero very close to the unit circle, then it may be necessary
for o to be close to 1. This can cause problems in evaluating the equation *** since its
denominator would be very small in this case.

Section 13.9 — The Complex Cepstrum for a Simple Multipath Model

Consider the general case a signal x(n) which consists of the convolution of two component
signals v(n) and p(n):

x(n) = v(n)*p(n). (equation 13.92a)
In the z-domain this relation is
X(2) = V(2)P(2). (equation 13.92b)

Consider the signal p(n) to have the form:
p(n) = 3(n) + B3(n-N,)+p8(n-2N,). (equation 13.93a)



The z-transform of p(n) is

P(z) = 1+ Pz © +p2z o

By using the formula for a finite geometric series, P(z) can be expressed as

P(z) = 1B—- (equation 13.93b)
1-pz %

The denominator is equal to zero when Bz ° =1or z% = B .

Therefore, roots of the denominator are at

i
z = [3 °e
The numerator is equal to zero when
p3z M =1 orgs =M.

Roots of the humerator are therefore at

ya =( 3)[%] eJ'21tk/(3N0) _ Ni j2nk/(3N )

p o™ k=0,1,..,3N,-1.

N k=0,1, ., Ny -1.

1

As would be expected for finite length signal, all the roots of the denominator of its z-transform
are "cancelled" by roots of the numerator. (2/3 of the roots of the numerator remain
"uncancelled.")



Now assume that the signal v(n) is the unit sample response of a second order system V(z)
where

-1
b, +b,z

9 . (equation 13.94a)
(1-re*z)(1-re*z7")

V(z) =

The time domain representation of this system is

v(n) = b,w(n) +b w(n-1) where (equation 13.94b)

w(n) = 452:12 5 {cos(6n) - cos[e(n +2)1lu(n), 620, = (equation 13.94c)

The figure below provides a plot of the poles and zeros of X(z)=P(z)V(z) for the following set of
parameter values:
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Figure 13.9 Pole-zero plot of the z-transform X(z) = V(z) P(z) for the example of Figure 13.10.
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The figure below shows plots of v(n), p(n). and x(n) corresponding to the poles and zeros
in the previous figure.
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Figure 13.10 The sequences (a) v[n], (b) p[n,. and (c) x(n) corresponding to the pole-zero
plot of Figure 13.9.



The signal model described above can serve as a basis for applying cepstral analysis 10
to a number of different application areas. For example:

Speech Processing

v(n): combined effect of glottal pulse shape and resonant effect of vocal tract
p(n): periodic excitation signal from the vocal cords

Seismic Data Analysis

v(n): waveform of acoustic pulse propagating in the earth do to a dynamite explosion or due to
an earthquake

p(n): asequence that represents reflections at boundaries between underground layers having
different propagation characteristics

Communication Systems:

v(n): signal transmitted over a multi-path channel
p(n): unit sample response of the multi-path channel



13.9.1 Computation of the Complex Cepstrum (for previous example) 11

To demonstrate the above signal model represents a situation where cepstral analysis can be
used effectively to perform deconvolution of signal component, we now calculate the complex
cepstrum for previous example:

Begin by writing V(z) in the form we used for the "polynomial rooting" method for rational
system (refer to equation 13.32):
bz 1+ (b, /b,)z] (equation 13.97)
V(z) = — -
(1-re®z)(1-re #®z7")

As discussed earlier, the z7"term corresponds to a simple time shift, and is usually discarded for
computational reasons. (Including this term would cause discontinuities of arg[x(e*®)] atw = +=,
and therefore V(z) would not be analytic on the unit circle, which is required, due to the
definition of the complex cepstrum.) Therefore, we proceed with representing V(z) as follows:
V(z) = b1[_1 +(by / b1)z_] _ (equation 13.98)

(1-refz ) (1-re *z7")

Note that the two poles are inside the unit circle and the zero is at —(b, / b,), which is outside the
unit circle, sinceb, =.98 and b, = 1for this example. Therefore, using the expression of equation
13.36, we can write




v[0] =log[b,] (equation 13.99a) 12

v[n]= l[(reje)n + (re—Je)n} n>0 due to the two poles inside unit circle  (equation 13.99b)
n
v[n] = lL—_bo]_ n<0 due to the zero outside unit circle (equation 13.99¢)
b, |’ '
Note that as expected, VIn]decreases as 1/n.

For future reference, note that we can write v[n] as
v[n]=V_[n]+V,[n]+V_[n]

where

0

v [n]=log[b], n

v, [n] = %[(re"")“ + (re‘j")"], n>0

- :2 cos(en)], n>0

\‘/[n]=l _—b‘)] . n < 0.
¢ n{ b,



Amplitude

Amplitude

Now determine the cepstrum of p[n], the other component of x[n]:
P(z) = logP(z) = log(1- B3z " ©) —log(1- Bz " °).
Now use the series expansion for the log function to represent p(z) as

. = p3k = gk
P(z)=-3 Bk SNk Z%Z‘Nok_ (equation 13.107)
k=1 k=1

Using the delay property of z-transforms, we can write the expression for p[n] as

« a3k w rk .
p(n)=-Y F8(n = 3NGk) + zra(n —N k). (equation 13.102)
k=1 k=1

Note that p[n] is equal to 0 except when k is a positive integer multiple ofN,.
Plots of V[n], p[n], and x(n) = V[n]+ p(n) are shown in the following figure:
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The real cepstrum of x(n), ¢ _(n), is the even part of X[n] and can therefore be expressed as 14

1.4 -
c (n)= E[X(n) +x(-n)]. equation 13.104

We also know that
c,(n)=c, (n)+c (n). equation 13.105
First, focus onc (n). Since c_(n)is the even part of v[n], it is related to v[n] via

1.~ -
c, (n)= E[V[n] +v[-n]].
Recall that we can express v[n] as

v[n] =V _[n]+V,[n]+V_[n] where
v [n]l=log[b,], n=0

v [n]= %[2 cos(en)], n>0

v [n]= l[‘b_bo} . n < 0.

1

Therefore, for n = 0 we can express ¢ _(n) as

1A . 1
,(0) = 519,(0) +¥,(0)] = 5 [log[b,] +logb, ] = log[b.].
Forn>0, we can write c (n) as

c,(n) = %[vbm) +¥ (-],



15

n

_T 1 (b n
= F[cos(en)] + [b—1 , n>0

2(-n)

o 1 . B
= F[cos(en)] - %(—1) [b_ ,

1

n>0.

For n <0, we can write ¢ _(n)as

., (M) = 5 [9,(-n) + ¥, ()]

n 1 (b -n
—[cos(en):|+%(—1) [b—‘:] , n<O.

_ r
(-n)
Therefore, for alln # 0 we can write

Inl
[ B,
(n)— [cos((—)n)]—T( 1) [ J , n=z0.

One way to represent the above expression is

c,(n) = grk {”Séek)}m(n ~K)+8(n+K)1- 31 (Db, /b8 +8(n+K)],  n=0.

2k
k=1
An expression of this form that is valid for all n is

8

c,(n) =log(b)3(r) + 3.1 [°°S|§9")}[s<n—k)+a(n+k) -3 5 D, /b)) + 5+ 1.

(see equation 13.106a)



We can also use equation 13.102 to express cp(n) as 16

oo oo

3k k
c.(n)= —%Z{[%J[S(n Z3Nk) + 8(n+ 3N J) ] + %Z{[%}[S(n SN+ 8(n+NK)T-
(equation 13.106b)

The following figure shows the sequencesc (n), c,(n), andc_(n) of the above example.
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Using the DFT to Compute the Complex Cepstrum of the Signal x(n) of Figure 13. 10 (c)

|ml A
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Ampljtude

Sample number (n)

(c)

Figure 13.10c The sequence x(n) corresponding to the pole-zero plot of Fig. 13.9

* This (the DFT-based implementation) will be an aliased version of the ceptrum
obtained by an analytic evaluation of the complex cepstrum of x(n), which was based on

the form of X(z).

e DFT length of 1024 will be used.

e First, look at the output of the second step in the system D.
(The result after applying the DFT, then applying the log operation.)
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Note the general appearance
of a rapidly varying periodic
component added to a more
slowly varying component.

4

Figure 13.13 Fourier transforms of
x[n}in Figure 13.10. (a) Log magnitude.
(b) Principal value of the phase.

{c) Continuous “unwrapped” phase after
removing a linear-phase component
from part (b). The DFT samples are
connected by straight lines.
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Now look at the output of step 3 (the inverse DFT) in system D« ,
which is the complex cepstrum:

aliased version

of Fig. 13.11c

aliased version

of Fig. 13.12c

Amplitude

1.5

Sample number [n]

(

a)

Sample number [n]

(b)

¢ Pulses at intervals of 15 are due
to periodic pulse train of p(n)

e Other component of complex cepstrum,
X,(n) decreases as 1/n.

e Since x(n) has a zero outside the
unit circle (and was therefore not a
minimum phase signal), ip(n)is
not O for n< 0.

Figure 13.14 (a) Complex cepstrum
%p[n] of sequence in Figure 13.10(c).
(b) Cepstrum cy[n] of sequence in
Figure 13.10(c).
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We can use a linear “lilter” to extract either the “low-time” part of the
complex cepstrum or the “high-time” part.

xfn] | i) | Frequency- | iy yi]
e D] »+  invariant > Dfl(] o
linear filter
(a)

(b)

Figure 13.15 (a) system for homomorphic deconvolution. (b) Time-domain rep-
resentation of frequency-invariant filtering.
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For the DFT, there are no negative indices. Therefore, the “low-time” and

“high-time” parts of the complex cepstrum are obtained by extracting

from the region 0 < n < N-1 the appropriate segments from the periodic extension
(with period N) of the desired “lifter.”

uuuuuu

3 I ——
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0 N, N-N, N-1
(a)

1 Figure 13.16  Time response of

i frequency-invariant linear systems for

; homomorphic deconvolution.

E : (a) Lowpass system. (b) Highpass

i ’ system. (Solid line indicates envelope of
: , n the sequence ¢[n] as it would be applied
N2 0 M N-N, N-1 in a DFT implementation. The dashed
{b) line indicates the periodic extension.)
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After extracting the low-time part of the complex ceptrum, the signal component
v(n) can be approximately reproduced using a DFT-implementation of system D'

(DFT, then exponentiation, then

IDFT)
The dashed lines in parts a and b are the output of the DFT step

(Compare this with the signal

AR I/v(n)inFig13.10(a)

Radian frequency @

(a)

Figure 13.17 Lowpass
frequency-invariant linear filiering in the
system of Figure 13.15. (a) Real parts of
the Fourier transforms of the input (solid
fline) and output (dashed line) of the
lowpass system with Ny = 14 and
: N = 14 in Figure 13.16(a).
: i ; ; (b) Imaginary parts of the input (soid

0 0-2m 0.4m 06m 08 " line) and output (dashed line).
Radian frequency Sample number [n] (c) Output sequence y[n] for the input of

(®) () Figure 13.10(c).
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After extracting the high-time part of the complex ceptrum, the signal component
p(n) can be approximately produced using a DFT- implementation of system.

-2

(DFT, then exponentiation, the IDFT)
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(Compare this with the signal

|/ p(n) in Fig 13.10(b)

1.5
l ............................................................................
ST p 1 Figure 13.18 lllustration of highpass
: : : frequency-invariant linear filtering in the
: : : system of Figure 13.15. (a) Real part of
0 ot oot ; the Fourier transform of the output of
: ! the highpass frequency-invariant system
with Ny = 14 and Ny = 5121in
~0.5 . ; : ; Figure 13.16(b). (b) Imaginary part for
-20 0 20 40 60 80 conditions of part (). (c) Output
Sample number [#] sequence y[n] for the input of
(©) Figure 13.10.
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~1.5 ; § i Figure 13.19 (a) Complex cepstrum of
-100 ~50 0 50 100 x[n} = xpiph * Xap[n]. (b) Complex
Sample number [n] cepstrum of xp;,[1]. (c) Complex

© cepstrum of xgp[n].
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(a) Minimum-phase
output. (b) Alipass output obtained as
depicted in Figure 13.7.
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80 Figure 13.21 (a) Minimum-phase
output. (b) Maximum-phase output

obtained as depicted in Figure 13.8.



