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  13.6.5	
  	
  The	
  Use	
  of	
  Exponen$al	
  Weigh$ng	
  
Exponen$al	
  weigh$ng	
  of	
  a	
  sequence	
  x(n)	
  is	
  defined	
  by	
  

	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa$on	
  13.69)	
  
Exponen$al	
  weigh$ng	
  can	
  be	
  used	
  to	
  avoid	
  or	
  lessen	
  some	
  of	
  the	
  problems	
  involved	
  with	
  
evalua$ng	
  the	
  complex	
  cepstrum	
  	
  	
  	
  	
  	
  	
  	
  .	
  Note	
  that	
  the	
  z-­‐transform	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
If	
  the	
  Region	
  of	
  Convergence	
  of	
  X(z)	
  is	
  
	
  
then	
  the	
  Region	
  of	
  Convergence	
  of	
  W(z)	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  which	
  can	
  be	
  also	
  expressed	
  as	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
	
  

w(n) = αnx(n).

 ̂x(n)  w(n)

 
W(z) = w(n)z−n

n=−∞

∞

∑

 
= αnx(n)z−n

n=−∞

∞

∑

= x(n) z
α

⎛

⎝⎜
⎞

⎠⎟

−n

n=−∞

∞

∑ = X z
α

⎛

⎝⎜
⎞

⎠⎟
.

 rR <  | z |  < rL

 
rR <  z

α
 < rL

α rR <  z  < α rL
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(equa$on	
  13.70)	
  



If	
  X(z)	
  has	
  a	
  pole	
  or	
  zero	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  then	
  W(z)	
  has	
  a	
  pole	
  of	
  zero	
  when	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  which	
  
corresponds	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  which	
  has	
  a	
  radius	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  the	
  same	
  angle	
  as	
  the	
  pole	
  or	
  zero	
  of	
  
X(z).	
  
	
  
Note	
  that	
  the	
  opera$on	
  of	
  exponen$al	
  weigh$ng	
  commutes	
  with	
  the	
  opera$on	
  of	
  convolu$on,	
  
as	
  shown	
  below:	
  	
  
Assume	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
Then	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
Therefore,	
  	
  
	
  
	
  
	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  
The	
  frequency	
  domain	
  version	
  of	
  this	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
Therefore,	
  in	
  compu$ng	
  the	
  complex	
  cepstrum	
  of	
  w(n),	
  which	
  is	
  the	
  exponen$ally	
  weighted	
  
version	
  of	
  x(n),	
  we	
  have	
  
	
  
	
  
	
  

 z = z0 = r0e
jθ0

 
z
α

= r0e
jθ0

 z = αr0e
jθ0

 αr0

 x(n) = x1(n) * x2(n)  w(n) = αnx(n)

 
W(z) = X z

α
⎛

⎝⎜
⎞

⎠⎟
= X1

z
α

⎛

⎝⎜
⎞

⎠⎟
X2

z
α

⎛

⎝⎜
⎞

⎠⎟

 
w(n) = IDTFT X1

z
α

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
* IDTFT X2

z
α

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = αnx1(n) * αnx2(n)

= w1(n) * w2(n)

 w1(n) = αnx1(n) w2(n) = αnx2(n).

 W(z) = W1(z)W2(z)

 Ŵ(z) = log[W(z)] = log[W1(z)] + log[W2(z)] and	
   ŵ(n) = ŵ1(n) + ŵ2(n).
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(equa$on	
  13.72)	
  

(equa$on	
  13.71)	
  

(equa$on	
  13.73)	
  



Applica$ons	
  of	
  exponen$al	
  weigh$ng	
  
	
  	
  
1.	
  Moving	
  poles	
  and	
  zeros	
  off	
  the	
  unit	
  circle,	
  so	
  that	
  complex	
  cepstrum	
  can	
  be	
  calculated.	
  
Because	
  of	
  the	
  way	
  the	
  complex	
  cepstrum	
  is	
  defined,	
  it	
  can	
  exist	
  only	
  if	
  the	
  Region	
  of	
  
Convergence	
  of	
  X(z)	
  and	
  also	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  include	
  the	
  unit	
  circle	
  in	
  the	
  z-­‐plane.	
  	
  
Poles	
  of	
  	
  X(z)	
  are	
  also	
  poles	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  
Zeros	
  of	
  X(z)	
  become	
  poles	
  of	
  	
  	
  	
  	
  	
  	
  	
  because	
  of	
  the	
  log	
  opera$on.	
  	
  Therefore,	
  if	
  X(z)	
  has	
  any	
  poles	
  
or	
  zeros	
  on	
  the	
  unit	
  circle,	
  the	
  complex	
  cepstrum,	
  as	
  we	
  have	
  defined	
  it,	
  cannot	
  exist.	
  
	
  
The	
  above	
  situa$on	
  can	
  be	
  remedied	
  by	
  exponen$al	
  weigh$ng,	
  using	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  to	
  move	
  any	
  poles	
  
and	
  zeros	
  which	
  are	
  on	
  the	
  unit	
  circle	
  to	
  new	
  loca$ons	
  inside	
  the	
  unit	
  circle	
  (keeping	
  the	
  angles	
  
of	
  the	
  poles	
  and	
  zeros	
  unchanged.)	
  
	
  
2.	
  Conver$ng	
  a	
  non-­‐minimum	
  phase	
  signal	
  to	
  a	
  signal	
  that	
  is	
  minimum-­‐phase.	
  
If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  largest	
  magnitude	
  of	
  any	
  of	
  the	
  poles	
  and	
  zeros	
  of	
  X(z)	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  we	
  can	
  
generate	
  a	
  minimum-­‐phase	
  version	
  of	
  x(n)	
  by	
  using	
  exponen$al	
  weigh$ng,	
  
	
  
where	
  	
  	
  	
  	
  	
  is	
  chosen	
  to	
  sa$sfy	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  

 ̂X(z) = log[X(z)]

 ̂X(z) = log[X(z)]

  ̂X(z)

 α < 1

 zmax  zmax > 1

 w(n) = αnx(n)
α | zmaxα |  <1.
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3.	
  Compu$ng	
  the	
  complex	
  cepstrum	
  without	
  compu$ng	
  the	
  complex	
  log	
  (which	
  would	
  involve	
  
phase	
  unwrapping)	
  
The	
  exponen$ally	
  weighted	
  signal	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  has	
  z-­‐transform	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  If	
  the	
  Region	
  of	
  
Convergence	
  of	
  X(z)	
  is	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  
then	
  the	
  Region	
  of	
  Convergence	
  of	
  W(z)	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  
and	
  the	
  poles	
  and	
  zeros	
  of	
  X(z)	
  are	
  shi[ed	
  radially	
  by	
  a	
  factor	
  of	
  	
  	
  	
  	
  .	
  	
  	
  
	
  
If	
  X(z)	
  has	
  no	
  poles	
  or	
  zeros	
  on	
  the	
  unit	
  circle	
  then	
  	
  	
  	
  	
  can	
  be	
  chosen	
  so	
  that	
  no	
  poles	
  or	
  zeros	
  of	
  	
  	
  
X(z)	
  move	
  across	
  the	
  unit	
  circle	
  in	
  forming	
  W(z).	
  Then,	
  the	
  Region	
  of	
  Convergence	
  of	
  W(z)	
  will	
  
also	
  include	
  the	
  unit	
  circle.	
  (This	
  is	
  a	
  necessary	
  condi$on	
  for	
  its	
  complex	
  cepstrum	
  to	
  exit.)	
  	
  
	
  
Note	
  that	
  the	
  poles	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  consist	
  of	
  the	
  poles	
  and	
  zeros	
  of	
  W(z)	
  and	
  the	
  Region	
  of	
  
Convergence	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  given	
  by	
  	
  
	
  
	
  
where	
  A	
  	
  is	
  the	
  largest	
  magnitude	
  of	
  the	
  poles	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  which	
  are	
  inside	
  the	
  unit	
  circle,	
  and	
  	
  B	
  	
  is	
  
the	
  smallest	
  magnitude	
  of	
  the	
  poles	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  which	
  are	
  outside	
  the	
  unit	
  circle.	
  
	
  

 w(n) = αnx(n)
  
W(z) = X z

α

⎛

⎝⎜
⎞

⎠⎟

 rR <  | z |  < rL

 | α | rR <  | z |  < | α | rL

α

α

 Ŵ(z) = log[W(z)]
 Ŵ(z)

A <  | z |  < B  

 Ŵ(z)
 Ŵ(z)
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Therefore,	
  the	
  Region	
  of	
  Convergence	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  includes	
  the	
  unit	
  circle,	
  which	
  is	
  another	
  	
  	
  	
  
necessary	
  condi$on	
  for	
  the	
  complex	
  cepstrum	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  exist.	
  
	
  
Since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  complex	
  cepstrum	
  of	
  w(n)	
  is	
  
	
  
	
  
	
  
Now	
  assume	
  that	
  instead	
  of	
  the	
  complex	
  cepstrum,	
  we	
  have	
  calculated	
  the	
  real	
  cepstrum	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  
For	
  the	
  case	
  where	
  x(n)	
  is	
  real,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  will	
  also	
  be	
  real.	
  	
  In	
  this	
  case,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  even	
  
part	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  even	
  part	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  These	
  rela$ons	
  can	
  be	
  expressed	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  	
  	
  	
  	
  
From	
  equa$on	
  *	
  we	
  can	
  write	
  	
  
	
  
Subs$tu$ng	
  the	
  above	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  into	
  equa$on	
  **	
  gives:	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

 Ŵ(z)
 ̂w(n)

 
Ŵ(z) = logW(z) = logX z

α
⎛

⎝⎜
⎞

⎠⎟

ŵ(n) = IDTFT logX z
α

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= αn  IDTFT logX(z)⎡⎣ ⎤⎦ = αnx̂(n).

 cx(n)

 ̂x(n),w(n)  ̂w(n)  cx(n)

 ̂x(n)  cw(n)  ̂w(n)

 
cx(n) = x̂(n) + x̂(−n)

2

 
cw(n) = ŵ(n) + ŵ(−n)

2
= αnx̂(n) + α−nx̂(−n)

2

 ̂x(−n) = 2cx(n) − x̂(n)

 ̂x(−n)

 
cw(n) =

αnx̂(n) + α−n[2cx(n) − x̂(n)]
2

 2cw(n) = αnx̂(n) + α−n[2cx(n) − x̂(n)]

 2cw(n) − α−n2cx(n) = x̂(n)[αn − α−n]
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equa$on	
  *	
  

equa$on	
  **	
  



	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
Possible	
  difficulty:	
  	
  If	
  X(z)	
  has	
  a	
  pole	
  or	
  zero	
  very	
  close	
  to	
  the	
  unit	
  circle,	
  then	
  it	
  may	
  be	
  necessary	
  
for	
  	
  	
  	
  	
  	
  to	
  be	
  close	
  to	
  1.	
  	
  This	
  can	
  cause	
  problems	
  in	
  evalua$ng	
  the	
  equa$on	
  ***	
  since	
  its	
  
denominator	
  would	
  be	
  very	
  small	
  in	
  this	
  case.	
  	
  
	
  
Sec0on	
  13.9	
  –	
  The	
  Complex	
  Cepstrum	
  for	
  a	
  Simple	
  Mul0path	
  Model	
  
Consider	
  the	
  general	
  case	
  a	
  signal	
  x(n)	
  which	
  consists	
  of	
  the	
  convolu$on	
  of	
  two	
  component	
  
signals	
  v(n)	
  and	
  p(n):	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa$on	
  13.92a)	
  
In	
  the	
  z-­‐domain	
  this	
  rela$on	
  is	
  	
  
	
  
Consider	
  the	
  signal	
  p(n)	
  to	
  have	
  the	
  form:	
  
	
  
	
  
	
  
	
  
	
  

 
x̂(n) =

2cw(n) − α−n2cx(n)
[αn − α−n]

 
=

2αncw(n) − 2cx(n)
[α2n −1]

x̂(n) =
2[cx(n) − αncw(n)]

1− α2n ,   n ≠ 0.

α

 x(n) = v(n)*p(n).

 X(z) = V(z)P(z).

p(n) = δ(n) + βδ(n-N0)+β2δ(n-2N0).
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(equa$on	
  13.92b)	
  

(equa$on	
  13.93a)	
  

equa$on	
  ***	
  



The	
  z-­‐transform	
  of	
  p(n)	
  is	
  
	
  
By	
  using	
  the	
  formula	
  for	
  a	
  finite	
  geometric	
  series,	
  P(z)	
  can	
  be	
  expressed	
  as	
  
	
  
	
  	
  
The	
  denominator	
  is	
  equal	
  to	
  zero	
  when	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  or	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
Therefore,	
  roots	
  of	
  the	
  denominator	
  are	
  at	
  
	
  
	
  
The	
  numerator	
  is	
  equal	
  to	
  zero	
  when	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  or	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
Roots	
  of	
  the	
  numerator	
  are	
  therefore	
  at	
  
	
  
	
  
As	
  would	
  be	
  expected	
  for	
  finite	
  length	
  signal,	
  all	
  the	
  roots	
  of	
  the	
  denominator	
  of	
  its	
  z-­‐transform	
  
are	
  "cancelled"	
  by	
  roots	
  of	
  the	
  numerator.	
  	
  (2/3	
  of	
  the	
  roots	
  of	
  the	
  numerator	
  remain	
  
"uncancelled.")	
  
	
  
	
  

P(z) = 1+ βz−N
0 + β2z−2N

0 .

P(z) = 1-β3z−3N
0

1− βz−N
0

.

 βz
−N0 = 1  z

N
0 = β

zk = β
1

N
0ej2πk/N

0 ,      k = 0, 1, ... , N0 −1.

 β
3z−3N0 = 1 β3 = z3N

0 .

zk = β3( )
1

3N0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ej2πk/(3N
0
)  =  β

1
N

0ej2πk/(3N
0
),      k = 0, 1, ... , 3N0 −1.
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(equa$on	
  13.93b)	
  



Now	
  assume	
  that	
  the	
  signal	
  v(n)	
  is	
  the	
  unit	
  sample	
  response	
  of	
  a	
  second	
  order	
  system	
  V(z)	
  	
  	
  	
  
where	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
The	
  $me	
  domain	
  representa$on	
  of	
  this	
  system	
  is	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  
	
  
	
  
The	
  figure	
  below	
  provides	
  a	
  plot	
  of	
  the	
  poles	
  and	
  zeros	
  of	
  X(z)=P(z)V(z)	
  for	
  the	
  following	
  set	
  of	
  
parameter	
  values:	
  
	
  
	
  

V(z) = b0 + b1z−1

(1− rejθz−1)(1− re− jθz−1)
.

 v(n) = b0w(n) + b1w(n −1)

 
w(n) = rn

4sin2 θ
cos(θn) − cos[θ(n + 2)]{ }u(n),      θ ≠ 0, π

b0 = .98      
b1 = 1      
β = r = 0.9     
θ = π/6     
N0=15 
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(equa$on	
  13.94a)	
  

(equa$on	
  13.94c)	
  

(equa$on	
  13.94b)	
  

Figure	
  13.9	
  Pole-­‐zero	
  plot	
  of	
  the	
  z-­‐transform	
  X(z)	
  =	
  V(z)	
  P(z)	
  for	
  the	
  example	
  of	
  Figure	
  13.10.	
  



The	
  figure	
  below	
  shows	
  plots	
  of	
  v(n),	
  p(n).	
  and	
  x(n)	
  corresponding	
  to	
  the	
  poles	
  and	
  zeros	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
in	
  the	
  previous	
  figure.	
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Figure	
  13.10	
  The	
  sequences	
  (a)	
  v[n],	
  (b)	
  p[n,.	
  and	
  (c)	
  x(n)	
  corresponding	
  to	
  the	
  pole-­‐zero	
  
plot	
  of	
  Figure	
  13.9.	
  	
  	
  



The	
  signal	
  model	
  described	
  above	
  can	
  serve	
  as	
  a	
  basis	
  for	
  applying	
  cepstral	
  analysis	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
to	
  a	
  number	
  of	
  different	
  applica$on	
  areas.	
  	
  For	
  example:	
  
	
  	
  
Speech	
  Processing	
  	
  
v(n):	
  	
  	
  combined	
  effect	
  of	
  gloeal	
  pulse	
  shape	
  and	
  resonant	
  effect	
  of	
  vocal	
  tract	
  
p(n):	
  	
  	
  periodic	
  excita$on	
  signal	
  from	
  the	
  vocal	
  cords	
  
	
  	
  
Seismic	
  Data	
  Analysis	
  
v(n):	
  	
  	
  waveform	
  of	
  acous$c	
  pulse	
  propaga$ng	
  in	
  the	
  earth	
  do	
  to	
  a	
  dynamite	
  explosion	
  or	
  due	
  to	
  	
  
an	
  earthquake	
  
p(n):	
  	
  	
  a	
  sequence	
  that	
  represents	
  reflec$ons	
  at	
  boundaries	
  between	
  underground	
  layers	
  having	
  
different	
  propaga$on	
  characteris$cs	
  	
  
	
  
Communica$on	
  Systems:	
  
v(n):	
  	
  	
  signal	
  transmieed	
  over	
  a	
  mul$-­‐path	
  channel	
  
p(n):	
  	
  	
  unit	
  sample	
  response	
  of	
  the	
  mul$-­‐path	
  channel	
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13.9.1	
  Computa$on	
  of	
  the	
  Complex	
  	
  Cepstrum	
  (for	
  previous	
  example)	
  
	
  	
  
To	
  demonstrate	
  the	
  above	
  signal	
  model	
  represents	
  a	
  situa$on	
  where	
  cepstral	
  analysis	
  can	
  be	
  
used	
  effec$vely	
  to	
  perform	
  deconvolu$on	
  of	
  signal	
  component,	
  we	
  now	
  calculate	
  the	
  complex	
  
cepstrum	
  for	
  previous	
  example:	
  
	
  	
  
Begin	
  by	
  wri$ng	
  V(z)	
  in	
  the	
  form	
  we	
  used	
  for	
  the	
  "polynomial	
  roo$ng"	
  method	
  for	
  ra$onal	
  
system	
  (refer	
  to	
  equa$on	
  13.32):	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa$on	
  13.97)	
  
	
  
As	
  discussed	
  earlier,	
  the	
  	
  	
  	
  	
  	
  term	
  corresponds	
  to	
  a	
  simple	
  $me	
  shi[,	
  and	
  is	
  usually	
  discarded	
  for	
  
computa$onal	
  reasons.	
  	
  (Including	
  this	
  term	
  would	
  cause	
  discon$nui$es	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  
and	
  therefore	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  would	
  not	
  be	
  analy$c	
  on	
  the	
  unit	
  circle,	
  which	
  is	
  required,	
  due	
  to	
  the	
  
defini$on	
  of	
  the	
  complex	
  cepstrum.)	
  	
  Therefore,	
  we	
  proceed	
  with	
  represen$ng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  follows:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa$on	
  13.98)	
  
	
  
Note	
  that	
  the	
  two	
  poles	
  are	
  inside	
  the	
  unit	
  circle	
  and	
  the	
  zero	
  is	
  at	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  which	
  is	
  outside	
  the	
  
unit	
  circle,	
  since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  this	
  example.	
  	
  Therefore,	
  using	
  the	
  expression	
  of	
  equa$on	
  
13.36,	
  we	
  can	
  write	
  
	
  
	
  
	
  
	
  

V(z) = b1z−1[1+ (b0 / b1)z]
(1− rejθz−1)(1− re− jθz−1)

.

 z−1

 arg[x(ejω )] ω = ±π

 ̂V(z)
 ̂V(z)

V(z) = b1[1+ (b0 / b1)z]
(1− rejθz−1)(1− re− jθz−1)

.

 −(b1 / b0)

  b0 = .98  b1 =1
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  (equa$on	
  13.99a)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  due	
  to	
  the	
  two	
  poles	
  inside	
  unit	
  circle	
  	
  	
  	
  	
  (equa$on	
  13.99b)	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  due	
  to	
  the	
  zero	
  outside	
  unit	
  circle	
  	
  	
  (equa$on	
  13.99c)	
  	
  
	
  
Note	
  that	
  as	
  expected,	
  	
  	
  	
  	
  	
  	
  	
  	
  decreases	
  as	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
For	
  future	
  reference,	
  note	
  that	
  we	
  can	
  write	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
where	
  

 ̂v[0] = log[b1]

 
v̂[n] = 1

n (rejθ)n + (re− jθ)n⎡
⎣

⎤
⎦ ,     n > 0

v̂[n] = 1
n

−b0
b1

⎛

⎝
⎜

⎞

⎠
⎟

−n

,       n < 0.

 ̂v[n]  1/n

 ̂v[n]

 ̂v[n] = v̂a[n] + v̂b[n] + v̂c[n]

 ̂va[n] = log[b1],      n = 0

 
v̂b[n] = 1

n (rejθ)n + (re− jθ)n⎡⎣ ⎤⎦ ,     n > 0

 
= rn

n
2cos(θn)⎡⎣ ⎤⎦ ,     n > 0

v̂c[n] = 1
n

−b0
b1

⎛

⎝
⎜

⎞

⎠
⎟

−n

,       n < 0.

12	
  



Now	
  determine	
  the	
  cepstrum	
  of	
  p[n],	
  the	
  other	
  component	
  of	
  x[n]:	
  
	
  
Now	
  use	
  the	
  series	
  expansion	
  for	
  the	
  log	
  func$on	
  to	
  represent	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  	
  
Using	
  the	
  delay	
  property	
  of	
  z-­‐transforms,	
  we	
  can	
  write	
  the	
  expression	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa$on	
  13.102)	
  
	
  
Note	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  equal	
  to	
  0	
  except	
  when	
  k	
  is	
  a	
  posi$ve	
  integer	
  mul$ple	
  of	
  	
  	
  	
  	
  .	
  
Plots	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  ,	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  shown	
  in	
  the	
  following	
  figure:	
  	
  	
  
	
  

P̂(z) = logP(z) = log(1− β3z−3N
0 ) − log(1− βz−N

0 ).

 ̂P(z)

P̂(z) = − β3k

kk=1

∞

∑ z−3N
0
k
+ βk

kk=1

∞

∑ z−N
0
k.

 ̂p[n]

p̂(n) = − β3k

kk=1

∞

∑ δ(n − 3N0k) +
βk

kk=1

∞

∑ δ(n − N0k).

 ̂p[n]  N0

 ̂v[n]  ̂p[n]  ̂x(n) = v̂[n] + p̂(n)

(equation 13.101)
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Figure	
  13.11	
  The	
  sequences	
  (a)	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  (b)	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  and	
  
(c)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  	
  

v̂[n]   ̂p[n]
  ̂x[n]



The	
  real	
  cepstrum	
  of	
  x(n),	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  is	
  the	
  even	
  part	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  can	
  therefore	
  be	
  expressed	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
We	
  also	
  know	
  that	
  
	
  	
  
First,	
  focus	
  on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  Since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  even	
  part	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  it	
  is	
  related	
  to	
  	
  	
  	
  	
  	
  	
  	
  	
  via	
  
	
  
	
  
Recall	
  that	
  we	
  can	
  express	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  
	
  
	
  
	
  
	
  
	
  
Therefore,	
  for	
  n	
  =	
  0	
  we	
  can	
  express	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  
For	
  n	
  >	
  0	
  ,	
  we	
  can	
  write	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  

 cx(n)  ̂x[n]

cx(n) =
1
2
[x̂(n) + x̂(−n)].

cx(n) = cv(n) + cp(n).

 cv(n)  cv(n)  ̂v[n]  ̂v[n]

cv(n) =
1
2[v̂[n] + v̂[−n]].

 ̂v[n]
 ̂v[n] = v̂a[n] + v̂b[n] + v̂c[n]

 ̂va[n] = log[b1],      n = 0

 
v̂b[n] == rn

n
2cos(θn)⎡⎣ ⎤⎦ ,     n > 0

v̂c[n] = 1
n

−b0
b1

⎛

⎝
⎜

⎞

⎠
⎟

−n

,       n < 0.

 cv(n)

cv(0) =
1
2
[v̂a(0) + v̂a(0)] =

1
2
[log[b1] + log[b1]] = log[b1].

 cv(n)

cv(n) =
1
2[v̂b(n) + v̂c(−n)].
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equa$on	
  13.105	
  

equa$on	
  13.104	
  



	
  
	
  
	
  
	
  
	
  
For	
  n	
  <	
  0,	
  we	
  can	
  write	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  	
  
	
  	
  
	
  	
  
Therefore,	
  for	
  all	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  we	
  can	
  write	
  
	
  	
  
	
  
One	
  way	
  to	
  represent	
  the	
  above	
  expression	
  is	
  
	
  	
  
	
  
An	
  expression	
  of	
  this	
  form	
  that	
  is	
  valid	
  for	
  all	
  n	
  is	
  
	
  

 
= rn

n
cos(θn)⎡⎣ ⎤⎦ +

1
2(−n)

−b0
b1

⎛

⎝
⎜

⎞

⎠
⎟

n

,      n > 0

= rn

n
cos(θn)⎡⎣ ⎤⎦ −

1
2n

(−1)n b0
b1

⎛

⎝
⎜

⎞

⎠
⎟

n

,      n > 0.

 cv(n)

 
cv(n) = 1

2[v̂b(−n) + v̂c(n)]

 
= r −n

(−n)
cos(θn)⎡⎣ ⎤⎦ +

1
2n

(−1)−n b0
b1

⎛

⎝
⎜

⎞

⎠
⎟

−n

,      n < 0.

 n ≠  0

cv(n) = r|n|

| n |
cos(θn)⎡⎣ ⎤⎦ −

1
2 | n |

(−1)n b0
b1

⎛

⎝
⎜

⎞

⎠
⎟

|n|

,      n ≠ 0.

cv(n) = rk cos(θk)
k

⎡

⎣
⎢

⎤

⎦
⎥

k=1

∞

∑ [δ(n − k) + δ(n + k)] − 1
2k

(−1)k(b0 / b1)
k

k=1

∞

∑ [δ(n − k) + δ(n + k)],      n ≠ 0.

cv(n) = log(b1)δ(n) + rk cos(θk)
k

⎡

⎣
⎢

⎤

⎦
⎥

k=1

∞

∑ [δ(n − k) + δ(n + k)] − 1
2k

(−1)k(b0 / b1)
k

k=1

∞

∑ [δ(n − k) + δ(n + k)].

(see	
  equa$on	
  13.106a)	
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We	
  can	
  also	
  use	
  equa$on	
  13.102	
  to	
  express	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (equa$on	
  13.106b)	
  
The	
  following	
  figure	
  shows	
  the	
  sequences	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  of	
  the	
  above	
  example.	
  
	
  	
  
	
  

 cp(n)

cp(n) = − 1
2

β3k

k
⎛

⎝
⎜

⎞

⎠
⎟

k=1

∞

∑ δ(n − 3N0k) + δ(n + 3N0k)⎡⎣ ⎤⎦ +
1
2

βk

k
⎛

⎝
⎜

⎞

⎠
⎟

k=1

∞

∑ δ(n − N0k) + δ(n + N0k)⎡⎣ ⎤⎦ .

  cv(n)   cp(n)   cx(n)
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Figure	
  13.12	
  	
  The	
  sequences	
  cv(n),	
  cp(n),	
  and	
  cx(n)	
  



Using	
  the	
  DFT	
  to	
  Compute	
  the	
  Complex	
  Cepstrum	
  of	
  the	
  Signal	
  x(n)	
  of	
  Figure	
  13.	
  10	
  (c)	
  

•	
  This	
  (the	
  DFT-­‐based	
  implementa$on)	
  will	
  be	
  an	
  aliased	
  version	
  of	
  the	
  ceptrum	
  	
  
obtained	
  by	
  an	
  analy$c	
  evalua$on	
  of	
  the	
  complex	
  cepstrum	
  of	
  x(n),	
  which	
  was	
  based	
  on	
  	
  
the	
  form	
  of	
  X(z).	
  

•	
  DFT	
  length	
  of	
  1024	
  will	
  be	
  used.	
  

•	
  First,	
  look	
  at	
  the	
  output	
  of	
  the	
  second	
  step	
  in	
  the	
  system	
  D*	
  	
  	
  
(The	
  result	
  a[er	
  applying	
  the	
  DFT,	
  then	
  applying	
  the	
  log	
  opera$on.)	
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Figure	
  13.10c	
  The	
  sequence	
  x(n)	
  corresponding	
  to	
  the	
  pole-­‐zero	
  plot	
  of	
  Fig.	
  13.9	
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Note	
  the	
  general	
  appearance	
  
of	
  a	
  rapidly	
  varying	
  periodic	
  
component	
  added	
  to	
  a	
  more	
  
slowly	
  varying	
  component.	
  

 

 



Now	
  look	
  at	
  the	
  output	
  of	
  step	
  3	
  (the	
  inverse	
  DFT)	
  in	
  system	
  D*	
  ,	
  	
  
which	
  is	
  the	
  complex	
  cepstrum:	
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•	
  Pulses	
  at	
  intervals	
  of	
  	
  15	
  are	
  due	
  
to	
  periodic	
  pulse	
  train	
  of	
  p(n)	
  

•	
  Other	
  component	
  of	
  complex	
  cepstrum,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  decreases	
  as	
  1/n.	
   ̂xp(n)

•	
  Since	
  x(n)	
  has	
  a	
  zero	
  outside	
  the	
  
unit	
  circle	
  (and	
  was	
  therefore	
  not	
  a	
  
minimum	
  phase	
  signal),	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  
not	
  0	
  for	
  n	
  <	
  0.	
  

 ̂xp(n)

aliased	
  version	
  
	
  of	
  Fig.	
  13.12c	
  

aliased	
  version	
  	
  
of	
  Fig.	
  13.11c	
  



We	
  can	
  use	
  a	
  linear	
  “lilter”	
  to	
  extract	
  either	
  the	
  “low-­‐$me”	
  part	
  of	
  the	
  
complex	
  cepstrum	
  or	
  the	
  “high-­‐$me”	
  part.	
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For	
  the	
  DFT,	
  there	
  are	
  no	
  nega$ve	
  indices.	
  	
  Therefore,	
  the	
  “low-­‐$me”	
  and	
  
“high-­‐$me”	
  parts	
  of	
  the	
  complex	
  cepstrum	
  are	
  obtained	
  by	
  extrac$ng	
  	
  
from	
  the	
  region	
  0	
  ≤	
  n	
  ≤	
  N-­‐1	
  the	
  appropriate	
  segments	
  from	
  the	
  periodic	
  extension	
  	
  
(with	
  period	
  N)	
  of	
  the	
  desired	
  “li[er.”	
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A[er	
  extrac$ng	
  the	
  low-­‐$me	
  part	
  of	
  the	
  complex	
  ceptrum,	
  the	
  signal	
  component	
  
	
  v(n)	
  can	
  be	
  approximately	
  reproduced	
  using	
  a	
  DFT-­‐implementa$on	
  of	
  system	
  	
   D*

−1

(DFT,	
  then	
  exponen$a$on,	
  then	
  
	
  IDFT)	
  
The	
  dashed	
  lines	
  in	
  parts	
  a	
  and	
  b	
  are	
  the	
  output	
  of	
  the	
  DFT	
  step	
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(Compare	
  this	
  with	
  the	
  signal	
  
v(n)	
  in	
  Fig	
  13.10(a)	
  

 



A[er	
  extrac$ng	
  the	
  high-­‐$me	
  part	
  of	
  the	
  complex	
  ceptrum,	
  the	
  signal	
  component	
  
	
  p(n)	
  can	
  be	
  approximately	
  produced	
  using	
  a	
  DFT-­‐	
  implementa$on	
  of	
  system.	
  	
  

(DFT,	
  then	
  exponen$a$on,	
  the	
  IDFT)	
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(Compare	
  this	
  with	
  the	
  signal	
  
p(n)	
  in	
  Fig	
  13.10(b)	
  

 










