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13.2	
  Applica,ons	
  (of	
  Homomorphic	
  Deconvolu,on)	
  to	
  Speech	
  Processing	
  
	
  
Speech	
  produc,on	
  can	
  be	
  modeled	
  as	
  the	
  convolu,on	
  of	
  an	
  excita,on	
  signal	
  with	
  the	
  unit	
  
sample	
  response	
  of	
  a	
  linear	
  speech	
  produc,on	
  system.	
  	
  There	
  are	
  two	
  kinds	
  of	
  excita,on	
  signals:	
  
1.	
  pulse	
  train	
  (for	
  "voiced"	
  speech	
  where	
  the	
  vocal	
  cords	
  are	
  vibra,ng)	
  
2.	
  random	
  noise	
  (corresponding	
  to	
  "unvoiced"	
  speech,	
  such	
  as	
  the	
  "s"	
  sound”)	
  
	
  
This	
  is	
  summarized	
  in	
  the	
  diagram	
  below:	
  

	
  

1	
  

Figure	
  13.22	
  Discrete-­‐,me	
  model	
  of	
  speech	
  produc,on	
  



Vocal	
  tract	
  model:	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  output	
  speech	
  signal	
  is	
  represented	
  by	
  
	
  
For	
  voiced	
  speech,	
  
	
  
For	
  unvoiced	
  speech,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  random	
  noise	
  signal.	
  
	
  
Using	
  windowing	
  for	
  "short-­‐,me"	
  analysis.	
  	
  
	
  
Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  be	
  the	
  input	
  to	
  a	
  homomorphic	
  deconvolu,on	
  system	
  where	
  s(n)	
  is	
  a	
  speech	
  
signal	
  and	
  w(n)	
  is	
  a	
  window	
  func,on.	
  
	
  
	
  
	
  
For	
  voiced	
  speech,	
  
	
  
	
  

 

V(z) =
bkz−k

k=0

K
∑

akz−k

k=0

P
∑

 

= AZ−K0

(1− αkz
−1) (1− βkz)

k=1

Ko

∏
k=1

Ki

∏

(1− rke
jθkz−1)(1− rke

− jθkz−1)
k=1

P/2

∏

s(n) = v(n) * x(n).

x(n) = p(n) = δ(n − kN0)
k
∑ .

 x(n) = r(n)

 x(n) = s(n)w(n)

 x(n) = s(n)w(n)

x(n) = [p(n) * v(n)] ⋅w(n).

2	
  

equa,on	
  13.118	
  

equa,on	
  13.119	
  



If	
  w(n)	
  varies	
  slowly	
  rela,ve	
  to	
  varia,ons	
  of	
  v(n),	
  we	
  can	
  approximate	
  the	
  above	
  as	
  
	
  
	
  
where	
  
	
  
	
  
Complex	
  cepstrum	
  of	
  x(n)	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

 x(n) ≈ v(n) * pw(n)

 
pw(n) = w(n)p(n) = w(kN0)δ(n − kN0

k=0

M−1
∑ ).

 ̂x(n) = v̂(n) + p̂w(n)

 ̂pw(n)
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equa,on	
  13.125	
  

equa,on	
  13.126	
  

equa,on	
  13.122	
  

To	
  obtain	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  define	
  a	
  sequence	
  

  
wNo

(k) =
w(kN0),   k = 0,1,M-1
0;                otherwise

⎧
⎨
⎪

⎩⎪
equa,on	
  13.127	
  

The	
  Fourier	
  Transform	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  

Pw(e jω) = pw(k)e− jωk
k=0

M−1

∑ = w(mN0)δ(k − mN0
m=0

M−1

∑ )⎡

⎣
⎢

⎤

⎦
⎥ e

− jωk

k=0

M−1

∑

= w(mN0) δ(k − mN0
k=0

M−1

∑ )
m=0

M−1

∑ e− jωk = w(mN0)
m=0

M−1

∑ e− jωmN0

pw(n)



Period:	
  Set	
  	
  ωN0 = 2π and	
  solve	
  for	
  	
  	
  	
  	
  	
  :	
   ω =
2π
N0

= period

Because	
  of	
  the	
  rela,on	
  between	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  ,	
  the	
  rela,on	
  
between	
  their	
  inverse	
  DTFT’s	
  is	
  

 
Pw(e jω) = w(mN0)

m=0

M−1

∑ e− jωmN0 = WN0(e jωN0)

Note	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  also	
  has	
  the	
  same	
  period	
  as	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
   log[Pw(e jω)]

 log[Pw(e jω)]

Therefore,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  has	
  the	
  form:	
  	
  p̂w(n)

 
p̂w(n) = aiδ(n − iN0)

i
∑

equa,on	
  13.128	
  

 log[WN0(e jωN0)]

p̂w(n) = ŵN0[n / N0]
0

⎧
⎨
⎪

⎩⎪
  n = ±N0,±2N0,
otherwise	
  

(Recall	
  this	
  property	
  from	
  material	
  covered	
  in	
  Chapter	
  4.)	
  

equa,on	
  13.129	
  

ω

log[Pw(e jω)] = log[WN0(e jωN0 )]

 Pw(e jω)
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As	
  shown	
  before,	
  the	
  complex	
  cepstrum	
  for	
  a	
  signal	
  whose	
  z-­‐transform	
  V(z)	
  has	
  the	
  	
  
form	
  shown	
  in	
  equa,on	
  13.119	
  (shown	
  again	
  below)	
  is	
  as	
  follows:	
  

v̂(n) =

−
βk
−n

nk=1

K0

∑ ,     n < 0

log | A |,    n = 0

−
αk

n

n
+

k=1

K
i

∑
2rk

n

n
cos(θkn)

k=1

P/2

∑ ,     n > 0  .

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

= AZ−K
0

(1− αkz
−1) (1− βkz)

k=1

K
o

∏
k=1

K
i

∏

(1− rke
jθ

kz−1)(1− rke
− jθ

kz−1)
k=1

P/2

∏
(equa,on	
  13.119,	
  shown	
  again)	
  

(equa,on	
  13.130)	
  

Note:	
  The	
  above	
  expression	
  assumes	
  that	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  equa,on	
  13.119	
  is	
  	
  
removed	
  before	
  calcula,ng	
  the	
  complex	
  cepstrum	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  

z−K
0

v̂(n)
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13.10.2	
  Example	
  of	
  Homomorphic	
  Deconvolu,on	
  of	
  Speech	
  

•	
  Analysis	
  of	
  a	
  sec,on	
  of	
  voiced	
  speech	
  
•	
  Sampling	
  rate	
  -­‐	
  8,000	
  samples	
  per	
  second	
  
•	
  Hamming	
  window	
  of	
  length	
  401	
  used	
  (50	
  ms	
  window	
  length)	
  

6	
  



Figure	
  13.23	
  Homomorphic	
  deconvolu,on	
  of	
  speech.	
  	
  (a)	
  Segment	
  of	
  speech	
  weighted	
  by	
  
	
  a	
  Hamming	
  window.	
  (b)	
  High	
  quefrency	
  component	
  of	
  the	
  signal	
  in	
  (a).	
  	
  (c)	
  	
  Low	
  
quefrency	
  component	
  of	
  the	
  signal	
  in	
  (a).	
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Note	
  the	
  two	
  components:	
  	
  One	
  due	
  to	
  v(n)	
  which	
  decreases	
  as	
  1/n,	
  and	
  
the	
  other	
  which	
  is	
  a	
  pulse	
  train	
  due	
  to	
  p(n).	
  

9	
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Figure	
  13.26	
  (a)	
  System	
  for	
  cepstrum	
  analysis	
  of	
  speech	
  signals.	
  	
  (b)	
  Analysis	
  for	
  
voiced	
  speech.	
  	
  (c)	
  Analysis	
  for	
  unvoiced	
  speech.	
  



11	
  

Figure	
  13.27	
  (a)	
  Cepstra	
  and	
  (b)	
  log	
  specta	
  
for	
  sequen,al	
  segments	
  of	
  voiced	
  speech.	
  



Homomorphic	
  Deconvolu,on	
  of	
  Seismic	
  Signals	
  
	
  	
  
Two	
  types	
  of	
  seismic	
  signals:	
  

1.	
  Signal	
  generated	
  by	
  an	
  underground	
  explosion	
  and	
  measured	
  ader	
  passing	
  through	
  a	
  por,on	
  
of	
  the	
  earth's	
  crust.	
  	
  (Used	
  to	
  detect	
  underground	
  mineral	
  deposits.)	
  
2.	
  Signal	
  generated	
  by	
  a	
  natural	
  underground	
  event	
  (e.g.,,	
  earthquake)	
  
	
  
Genera,on	
  of	
  the	
  first	
  type	
  of	
  seismic	
  signal	
  can	
  be	
  modeled	
  as	
  shown	
  below:	
  

where	
  s(n)	
  	
  is	
  a	
  seismic	
  wavelet	
  that	
  depends	
  on	
  the	
  nature	
  of	
  the	
  excita,on	
  	
  and	
  p(n)	
  is	
  the	
  
"impulse	
  response"	
  of	
  the	
  por,on	
  of	
  the	
  earth's	
  crust	
  between	
  the	
  excita,on	
  and	
  the	
  point	
  of	
  
detec,on.	
  
	
  	
  
Cepstral	
  analysis	
  can	
  be	
  used	
  to	
  deconvolve	
  s(n)	
  and	
  p(n).	
  	
  Typical	
  signals	
  are	
  shown	
  in	
  the	
  
figures	
  below:	
  
	
  	
  	
  
	
  

 x(n) = s(n) * p(n)
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(e)	
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Restora,on	
  of	
  Acous,c	
  Recordings	
  
A	
  old	
  (low	
  quality)	
  audio	
  recording	
  can	
  be	
  represented	
  as	
  a	
  convolu,on	
  of	
  the	
  true	
  signal	
  with	
  a	
  
unit	
  sample	
  response	
  which	
  represented	
  the	
  "distor,ng	
  system,"	
  as	
  shown	
  in	
  the	
  figure	
  below:	
  
	
  
	
  
Processing	
  approach:	
  	
  es,mate	
  h(n)	
  so	
  that	
  its	
  effect	
  can	
  be	
  compensated	
  by	
  inverse	
  filtering.	
  
	
  
First,	
  sec,on	
  the	
  available	
  signal	
  into	
  M	
  sec,ons:	
  
	
  
	
  
	
  
Assume	
  that	
  	
  
Therefore,	
  	
  
and	
  	
  
	
  
We	
  can	
  obtain	
  an	
  es,mate	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  of	
  the	
  frequency	
  response	
  of	
  the	
  distor,ng	
  system	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  
obtaining	
  averages	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  

 x(n) = s(n) * h(n)

 

xm(n) = x(n + mN)               n = 0,1, . . .  , N-1  (index within section)
                                         m = 0,1, . . .  , M-1 (section index)

xm(n) ≈ sm(n) * h(n).

  Xm(ejω )  Sm(ejω )H(ejω )
log | Xm(ejω) |    log | Sm(ejω) | + log | H(ejω) | .

 He(e
jω )  H(ejω )

 log | Xm(ejω ) |  log | Sm(ejω ) |

log[He(e
jω)] = 1

M
log | Xm(ejω) |  -

m=0

M−1

∑ 1
M

log | Sm(ejω) |
m=0

M−1

∑
log[S(ejω )]

  
.
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We	
  can	
  obtain	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  averaging	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  over	
  M	
  data	
  segments.	
  	
  
	
  
	
  
We	
  can	
  obtain	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  which	
  is	
  an	
  es,mate	
  of	
  the	
  	
  "long-­‐,me"	
  power	
  spectrum	
  of	
  
high	
  quality	
  music	
  or	
  singing,	
  from	
  highly	
  quality	
  recordings	
  of	
  music	
  or	
  singing.	
  	
  This	
  averaging	
  is	
  
performed	
  on	
  music	
  of	
  the	
  same	
  music	
  type	
  as	
  the	
  music	
  being	
  processed.	
  
	
  
The	
  desired	
  inverse	
  filter	
  to	
  be	
  used	
  for	
  removing	
  the	
  recording	
  distor,on	
  is	
  then	
  
	
  
	
  
	
  
Ader	
  es,ma,ng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as	
  shown	
  above,	
  the	
  remaining	
  processing	
  steps	
  are:	
  
	
  
1.	
  	
  Use	
  IDFT	
  of	
  samples	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  obtain	
  	
  
2.	
  	
  Convolve	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  x(n)	
  to	
  "undo"	
  the	
  distor,on	
  introduced	
  by	
  the	
  low-­‐quality	
  recording	
  
system.	
  
	
  
	
  	
  
	
  

 

1
M

log | Xm(ejω ) |
m=0

M−1

∑  log | Xm(ejω ) |

 

1
M

log | Sm(ejω ) |
m=0

M−1

∑

 

He
−1(ejω ) = 1

He(e
jω )

,            |ω| < ωp

           =   0,                  ωs< |ω| <π

 He
−1(ejω )

 He
−1(ejω ) he

−1(n).

 he
−1(n)
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Homomorphic	
  Image	
  Processing	
  
We	
  can	
  represent	
  the	
  genera,on	
  of	
  an	
  image	
  	
  using	
  the	
  following	
  rela,on:	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  image,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  an	
  illumina,on	
  func,on,	
  
and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  a	
  reflec,on	
  func,on	
  which	
  sa,sfies	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
Therefore,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
Digital	
  images:	
  	
  sampled	
  versions	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
Example	
  of	
  processing	
  goals:	
  
Use	
  homomorphic	
  system	
  for	
  mul,plica,on	
  to:	
  
(a)  reduce	
  the	
  dynamic	
  range	
  (for	
  communica,ons	
  and/or	
  storage)	
  
(b)  enhance	
  contrast	
  (sharpen	
  edges)	
  in	
  the	
  image.	
  
	
  	
  
	
  
	
  
	
  
	
  

 f(u,v) = fi(u,v)fr(u,v)

 f(u,v)

 fi(u,v)

 fr(u,v)  0 < fr(u,v) <1

 0 < f(u,v) < fi(u,v) < ∞

 f(u,v)

 f(m,n) = fi(m,n)fr(m,n)

 f(m,n)  ̂f(m,n)  ̂y(m,n)  y(m,n)
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(Recall	
  that	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  so	
  that	
  real	
  log	
  can	
  be	
  used.)	
  
	
  
	
  
	
  
The	
  output	
  of	
  the	
  middle	
  box	
  (linear	
  system)	
  is	
  
	
  
	
  
	
  
and	
  the	
  output	
  of	
  the	
  final	
  box	
  (exponen,a,on)	
  is	
  therefore	
  
	
  
	
  
	
  
	
  
	
  
Basis	
  for	
  choosing	
  the	
  linear	
  system	
  
•	
  Illumina,on	
  usually	
  varies	
  "slowly"	
  (gradually)	
  across	
  a	
  scene	
  (although	
  it	
  may	
  vary	
  a	
  large	
  
amount	
  over	
  the	
  en,re	
  scene,	
  and	
  therefore	
  have	
  a	
  large	
  overall	
  dynamic	
  range).	
  
	
  •	
  The	
  reflec,ve	
  component	
  may	
  vary	
  "rapidly,"	
  due	
  to	
  sharp	
  edges	
  and	
  changes	
  of	
  texture.	
  
	
  
	
  

 f(m,n) > 0

 f̂(m,n) = log[fi(m,n)fr(m,n] = log[fi(m,n)] + log[fr(m,n)]

 = f̂i(m,n) + f̂r(m,n)

 ̂y(m,n) = L[̂f(m,n)]

 = L[̂fi(m,n) + f̂r(m,n)] = L[̂fi(m,n)] + L[̂fr(m,n)]

 y(m,n) = exp[ŷ(m,n)]

 
= exp L[̂fi(m,n)] + L[̂fr(m,n)]{ }
= exp L[̂fi(m,n)]{ }iexp L[̂fr(m,n)]{ } .
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Therefore,	
  consider	
  the	
  following	
  linear	
  system	
  for	
  the	
  middle	
  box	
  in	
  the	
  overall	
  system:	
  
	
  
Then	
  the	
  overall	
  output	
  will	
  be	
  
	
  
	
  
	
  
	
  
	
  
	
  
To	
  reduce	
  the	
  dynamic	
  range,	
  we	
  need	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
To	
  increase	
  the	
  contrast	
  of	
  the	
  image	
  (increase	
  the	
  ra,o	
  between	
  two	
  different	
  intensi,es),	
  	
  we	
  
need	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
However,	
  since	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  a	
  "low-­‐frequency"	
  signal	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  a	
  "high	
  frequency"	
  signal,	
  we	
  can	
  
use	
  the	
  following	
  linear	
  system	
  to	
  target	
  both	
  goals:	
  
	
  

 ̂y(m,n) = γ ⋅ f̂(m,n)

 y(m,n) = exp[ŷ(m,n)] = exp[γ ⋅ f̂(m,n)]

 = exp[γ ⋅ (̂fi(m,n) + f̂r(m,n))]

 = exp[γ ⋅ (̂fi(m,n)]exp[γ ⋅ f̂rm,n)]

y(m,n) = [fi(m,n)]γ[fr(m,n)]γ .

 γ <1

 γ >1
 fi(m,n)  fr(m,n)
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