1. Let L be the language corresponding to the RE $b(ab)^*$. For the following CFG for L, determine the number of derivation trees for the string $bababab$.

$$S \rightarrow SaS \mid b$$

2. Consider the following CFG with start state S:

$$S \rightarrow 0AS \mid 1BS \mid \varepsilon$$

$$A \rightarrow 0AA \mid 1$$

$$B \rightarrow 1BB \mid 0$$

Determine the language generated by S. Justify your answer.

3. Consider the language of strings where (at least) the first half is all the same symbol. To be specific, consider the set of all strings $a^n x$ where $|x| \leq n$ and $x \in \{a, b\}^*$. Give both a grammar and a PDA for this language.

4. Produce a PDA that accepts all strings of the form $0^a1^b2^c$ such that $a, b, c > 0$ and at least one of the following is true: $a < b$ or $b < c$.

5. Explain how, given a PDA for L_1 and a PDA for L_2, one can produce a PDA for the concatenation L_1L_2.

Due: Wednesday October 11