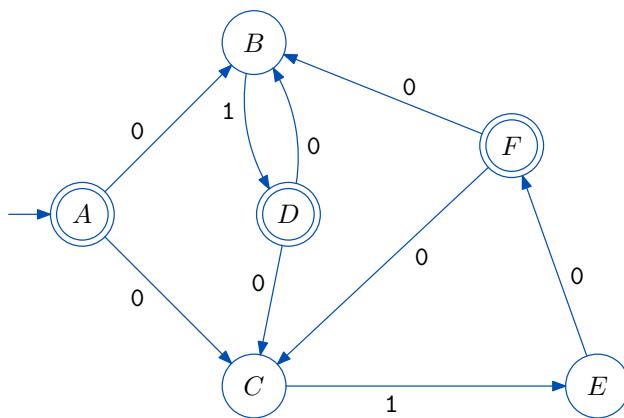


Assignment 3

(Please work in groups of two or three and submit one answer sheet for the group.)

1. Consider the following NFA with language W .



- (a) Give two examples of strings in W .
- (b) Give two examples of strings not in W .
- (c) Describe in English W . Be precise.

2. Provide an algorithm to tell if the language is infinite or not if the input is

- (a) an RE
- (b) an NFA.

3. Use the subset construction to produce a DFA equivalent to the following NFA.

4. Let E be the language of all strings of $\{a, b, c\}$ such that each symbol appears an even number of times. For example, E includes the string `aababa`.
 - (a) Explain how one can use the product construction to provide a DFA for E that has eight states.
 - (b) Explain why there is no DFA for E with fewer than eight states.
5. In a spell checker, it is useful to check whether the given word is one symbol away from a word in the dictionary. For a language L , define L' to be the set of all strings obtainable by altering at most one symbol in a string of L . For example, if L is $\{CAT, DOG\}$, then L' is $\{AAT, BAT, CAT, \dots, ZAT, \dots, AOG, \dots, DOZ\}$.

Describe an algorithm that on input an FA for a general regular language L converts it into an FA for L' .

Due: Wednesday September 18