

Assignment 4

(Please work in groups of two or three and submit one answer sheet for the group.)

1. Let P_m be the set of all binary strings with a 1 in the m th to last symbol (and at least m symbols). For example, P_1 is the set of all strings ending with a 1. Describe an NFA that accepts P_m and uses $m + 1$ states.
2. Let M be the language of all binary strings that contain the substring 11 and whose number of 0's is even. (For example, 0101100 is in M .) Answer the following with justification:
 - (a) Give a collection of strings such that your strings are pairwise distinguishable with respect to M and your collection is as big as possible.
 - (b) Give a collection of strings such that your strings are pairwise indistinguishable with respect to M and your collection is as big as possible.
3. Give CFGs for all strings of the form:
 - (a) $10^n 10^n 1$
 - (b) $0^n 1^m 2^k$ with $n = m + k$
 - (c) $0^n 1^m 0^m 1^n$
 - (d) $0^i 1^j 2^k$ with $i = j$ or $i = k$
4. Give a CFG for each of the following:
 - (a) All binary palindromes with exactly three 1's (such as 001010100).
 - (b) All binary strings that are NOT palindromes.
5. Consider the following CFG with start state S :

$$\begin{aligned} S &\rightarrow A \mid BS \mid SS \\ A &\rightarrow x \mid BB \\ B &\rightarrow y \mid SS \end{aligned}$$

Determine the language generated by S . Justify your answer.

Due: Wednesday September 25