

Warmup 2: Regular Languages and CFGs

1. Apply the **subset construction** to produce a DFA that accepts the same language as the following NFA.

2. Given a string x , an expansion of x is any string obtained by repeating each of the letters at least once. For example, both CCAATT and CCCCCCAAATT are expansions of CAT. Given a language L , the expansion of L is all possible expansions of strings in L . Describe an algorithm that, on input an FA, outputs the FA for the expansion thereof.

3. For each language, give 3 strings that are pairwise distinguishable with respect to that language:

- The set of all binary strings whose first and last bit are the same
- The set of all binary strings that contain 101 as substring
- The set of all binary strings of odd length.

4. For the alphabet $\{a, b\}$, give a CFG for:

- the set of all strings that start and end with abba
- the set of all even-length palindromes that contain abba as a substring.

5. Consider the following CFG with start variable S :

$$S \rightarrow 0T0 \mid 1T1 \mid 0T1 \mid 1T0 \mid \varepsilon$$

$$T \rightarrow 0S \mid 1S \mid \varepsilon$$

- Give a derivation tree for the string 01010
- Describe in English the language of this grammar.