

Warmup 5: Recursive, R.e., Decidable and Undecidable

1. Which of the following is generated by a context-sensitive grammar but not by any unrestricted grammar?
 - (a) $0^n 1^n$
 - (b) A_{tm}
 - (c) S_{tm}
 - (d) None of the above
2. Which of the following does NOT change the power of a TM?
 - (a) Adding multiple tapes
 - (b) Adding multiple heads
 - (c) Replacing the tape by 3 stacks
 - (d) All of the above
3. True/False: Every finite language is recursive.
4. In which of the following is it essential that we use parallelism?
 - (a) The proof that recursive languages are closed under star
 - (b) The proof that recursive languages are closed under intersection
 - (c) The proof that r.e. languages are closed under star
 - (d) The proof that r.e. languages are closed under intersection
5. Which of the following problems is decidable for a regular language?
 - (a) Is it infinite?
 - (b) Does it contain the string TIGER?
 - (c) Is it equal to its complement?
 - (d) All of the above
6. Which of the following problems is decidable for context-free grammars?
 - (a) Does the grammar generate the string ORANGE?
 - (b) Does the grammar generate everything?
 - (c) Do two grammars generate the same language?
 - (d) All of the above
7. Which of the following is true about the language A_{tm} ?
 - (a) It is recursive
 - (b) It is r.e.
 - (c) It is finite
 - (d) It consists of the encodings $\langle M \rangle$ such that M accepts $\langle M \rangle$
8. True/False: The complement of A_{tm} is also r.e.
9. True/False: S_{tm} is defined as the set of representations of TMs that do not halt on their own representation.

10. Which of the following statements is true about the proof that S_{tm} is not r.e.

- (a) It relies on the fact that a TM cannot recognize its own representation
- (b) It relies on the fact that a TM can simulate another TM
- (c) It relies on the fact that the sky is green
- (d) All the above

11. Which of the following decision problems is decidable?

- (a) The halting problem for TMs
- (b) The halting problem for nondeterministic TMs
- (c) The halting problem for DFAs
- (d) The halting problem for 2-PDAs

12. Diagonalization was invented by

- (a) Cantor
- (b) Deacon
- (c) Priestley
- (d) Pope

13. When one performs diagonalization on the following grid, what is the result?

P	O	N	Y
U	T	A	H
A	C	H	E
N	A	V	Y

- (a) TEST
- (b) ROFL
- (c) QUIZ
- (d) GAGA

14. Assume that language A reduces to language B and language B reduces to language C .

Assume that A is recursive and C is r.e. What can we say about language B ?

- (a) It is recursive
- (b) It is r.e. but not recursive
- (c) It is r.e. and might or might not be recursive
- (d) The given situation is impossible

15. Which of the following sets is NOT countable?

- (a) Binary strings
- (b) CFGs
- (c) Languages
- (d) REs