1. In Question 5 of the previous assignment, you considered the following CFGs:

 (a) \(S \to aS | bS | a | b | \varepsilon \)

 (b) \(S \to XaaaX \)
 \(X \to aX | bX | \varepsilon \)

 (c) \(S \to aaS | aaaS | a \)

 (d) \(S \to aX | bS | a | b \)
 \(X \to aX | a \)

 Determine which are ambiguous, and for each of those find a string that shows that the
 CFG is ambiguous.

2. Let \(L \) be the language corresponding to the RE \(b(ab)^* \). For the following CFG for \(L \),
 determine the number of derivation trees for the string \(bababab \).

 \[S \to SaS | b \]

3. Give a regular grammar for \(L \) of the previous exercise.

4. Give a CFG for the complement of \(\{0^n1^n : n \geq 0\} \).

5. Construct a PDA for the language of the previous exercise.

6. A CFG is called **linear** if the right-hand side of every production contains at most one
 variable. Thus a regular grammar is always linear. But a linear grammar need not
 generate a regular language: for example, we saw that palindromes are generated by a
 linear grammar.

 Show that the set of languages generated by linear grammars is closed under union.

Due: Thursday October 13