Warmup 3: Context-Free Languages

[about \(\frac{3}{4} \) length of actual test]

1. Give a regular grammar for the language generated by the RE \((x+y)^*(xxy+yx)\):

\[
S \rightarrow xS | yS | xA | yD \\
A \rightarrow yB \\
B \rightarrow yC | y \\
D \rightarrow xE | x
\]

2. Consider following PDA.

(a) Give two strings of length 4 accepted by the PDA.

(b) Give two strings of length 4 NOT accepted by the PDA.

(c) Describe in succinct-ish English the language of this PDA. Be precise.

all even-length binary strings of the form \(0^*1^*0^*\) where each block of 0's is at most half the string
3. Show that the context-free languages are closed under reversal. That is, show algorithmically that if language L is context-free, then so is L^R, where L^R consists of the reverses of all strings in L.

Take the CFG and write each production reversed.

\[S \rightarrow \phi PQ1 \text{ becomes } S \rightarrow 1QP\phi \]

4. Let EP be the language of all binary palindromes that have an equal number of 0’s and 1’s. Suppose one has to prove, using the Pumping Lemma, that EP is not regular. Assume k is the constant of the Pumping Lemma. For each of the following strings, state whether it is suitable for the string z that leads to a contradiction in the Pumping Lemma. Justify your answer.

(a) $0^k 1^k$

Not suitable. Not in language.

(b) $0^k 1^{2k} 0^k$

Suitable. If we write $z = uvvw$ with $|uvw| \leq k$ then uv^jw is a string of 0’s, and so $u^j v^j w$ is neither palindrome nor equal 0’s & 1’s.

(c) $(10)^{k/2}(01)^{k/2}$

Not suitable. If we write $z = uuvw$ with $|uv| = 1001$, the last 10 and first 01, then we can pump '10 and remain in the language and so NOT get contradiction.

(d) $0^{2022} 1^{2022}$

Not suitable. Not in language & not guaranteed long enough.