Variations of Turing Machines

We show that changing the model,
making it less or more restrictive,
does not change the power of a TM.



TMs as Transducers

A TM that perform calculations is a transducer.
It leaves the answer on the tape.

For example, a TM that starts with $'#$7 on tape
and ends with $% does multiplication.
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Example: Unary Halving

A TM that treats input as unary number and
divides it by 2.
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Example: Unary Halving

It changes first symbol to another symbol, and
then deletes the last symbol. And repeats. (At
end, we should revert new symbol to old.)

o
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A T-computable Function

A function f that converts strings into strings is
T-computable if some TM M computes it.

That is, M always halts, and on input w, M halts
with f(w) on its tape.

Goddard 12: 5



Variations on the Model

The definition of a Turing Machine is robust:
Many variations do not alter its power.

The general idea is:

* If capability is added, then show that stan-
dard TM can simulate it.

* If capability is removed, then show that crip-
pled TM can simulate standard one.
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Example: Omitting Stay-In-Place Option

For example, suppose we force TM to move its
head each time.

Well, one can achieve the net effect of stay-in-
place by moving the head off the cell and imme-
diately moving it back!

How does one ensure the head moves back?
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How Does One Ensure Head Moves Back?

Move to new intermediate state!

For example, transition 6(¢q, 0) = (r, 1, .5) becomes
6(¢q,0) = (x,1,L), and §(z, ANY) = (r,R, ANY),
where z is new state:

OO

becomes

(=
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Example: Medusa

Call a multi-headed TM the Medusa.

A standard TM can simulate the Medusa by stor-
ing the location of the Medusa’s heads. For ex-
ample, the standard TM could represent each
Medusan head by a new symbol #1, #9, etc.:
2 1
v v
tlolof1]o][1]1 becomes 1[#m:|olof1[®[o]1]1
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Example: Medusa Simulation

To simulate a step of the Medusa, the standard

TM sweeps along its tape, finds each Medusan
head, and updates it.

Note that the important thing is simulation, not
the number of steps.
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Multiple Tracks

A 2-track TM is one where there are two sym-
bols in each cell, an upper one and a lower one.

One way to simulate this, is to create a new al-

phabet: each letter of the alphabet represents a
pair of symbols.
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Multiple Tapes

A TM with multiple tapes has the same power

as a standard TM.

AlA A

0 A1

A

One approach is to convert a multitape TM to
a multitrack TM, storing the positions of the

heads as in the Medusa.
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Nondeterminism

Nondeterminism means that the TM may have
more than one choice of action. As usual, a
nondeterministic TM (or NTM) accepts a string
if some choice of actions lead to the accept state.

Theorem. A nondeterministic TM has the same
power as a standard TM.
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Proof Idea

We show that the NTM can be simulated by a de-
terministic one. Well, we try all possible choices!

We need the concept of configuration. This is a
record of the complete status of a TM: its state,
tape contents, and head position. (Note only fi-
nite portion of tape is used at any stage.)
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Proof of Theorem

We view the calculations of NTM as a tree. The
nodes are the configurations of the NTM, and
the children of a node are the possible next steps.
The NTM accepts the input if there is a branch
that leads to an accepting configuration.

The simulator does breadth-first-search of tree.
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A TM Can Simulate a Computer

At first, a TM appears primitive. But one can
show that one can use the first tape as random

access memory, as in a normal computer, if
second tape has address.

Further, one can show that one can translate

any program for a normal computer into a pro-
gram for a TM:

Fact. A Turing Machine can simulate a real
computer.
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Church’s Thesis

Several models of computation have been pro-
posed over the years, but they have exactly the
same power as a TM as recognizers:

Church’s “thesis” is the belief/claim that the
model is appropriate and has all the power of
any computer we might build.

Church’s thesis. There is an “effective proce-
dure” for a problem if and only if there is a TM
for the problemn.
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Universal TMs

A universal TM is a TM that takes another TM
as an input. For this, one needs to specily an

encoding of a TM. Universal TMs have been de-
vised with surprisingly few states.
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Related Models

The exercises consider connections between TMs
and other machines, including ones with multi-
ple stacks or ones with a queue.
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Practice 1

Draw a TM that erases all instances of a cer-
tain symbol from the input. Say the alphabet is
{0,1} and the TM erases all 1’s. For example, if
inputis 10101100, output is 0000.
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Solutions to Practice 1

The idea is to move each 0 to the left; then erase
the 1’s.
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Practice 2

A Jittery TM is one that always writes a different
symbol to the one it has just read. Show that a
Jittery TM can simulate a standard TM.
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Solutions to Practice 2

For each symbol in I', add a copy. Then for each
move of the standard TM, the Jittery TM makes
two moves: it first writes the duplicate symbol,
staying put but going to a temporary state; then
it writes the real symbol and moves to the cor-
rect state.

For example, the transition d(¢,0) = (r,0, L) be-
comes d(q,0) = (¢’,0’,s) and §(¢/, 0") = (r, 0, L).
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Summary

A normal TM can simulate a TM with a one-
way infinite tape, with multiple tapes, and so
forth. A nondeterministic TM is no more pow-
erful than a normal one. Church’s thesis says
that there is an algorithm for a problem if and
only if there is a TM for it. A TM can simulate
a normal computer. A universal TM is one that
can execute any other TM as an input.
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