
Countable Sets & Diagonalization

We show that there are infinitely more
languages than programs.



The Goal

Is there for every problem an algorithm: that is,
some procedure that gives the right answer, is
clear and completely described, and is guaran-
teed to terminate? Is there a TM for every lan-
guage?

We show that, surprisingly, the answer is no.

The proof technique is called diagonalization,
and uses self-reference.

Goddard 14a: 2



Cantor and Infinity

The idea of diagonalization was introduced by
Cantor in probing infinity. Both his result and
his proof technique are useful to us.

We look at infinity next.
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Equal-Sized Sets

If two finite sets are the same size, one can pair
the sets off: 10 apples with 10 oranges. This is
called a 1–1 correspondence: every apple and
every orange is used up.

So we say two infinite sets are the same size if
there is a 1–1 correspondence.
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Countable Sets

Define N to be the set of all positive integers:
{1, 2, 3, . . .}.

A set is countably infinite if the same size as N.
It is countable if finite or countably infinite. This
means there is a numbered list of all elements.
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Example

The positive even numbers are the same size
as N: one can pair 1 with 2, 2 with 4, 3 with
6, and so on. Note that the even numbers are
used up:

1 – 2
2 – 4
3 – 6

...

In particular, this means that the positive even
numbers are countable.
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Practice

Show that the set of integers, positive and neg-
ative, is countable.
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Solution to Practice

Use the 1–1 correspondence: 1 : 0, 2 : 1, 3 : −1,
4 : 2, 5 : −2. That is, f (i) = i/2 is i is even, and
f (i) = −(i− 1)/2 if i is odd.
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Exercise: The Rationals are Countable

The rationals are countable (Exercise).

But there are sets that are not countable.
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Diagonalization

Given a list of words, one can construct a word
not on the list:

Start with the diagonal as a word, and then
replace each letter by the next letter in the
alphabet.
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Example Diagonalization

1. Q U I E T

2. S T O N E

3. O F F E R

4. C L E A R

5. P H L O X

Here diagonalization produces RUGBY. This is not
on the list.
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Diagonalization Always Gives New Word

The new word cannot be on the list: it is differ-
ent from first word in first letter, different from
second word in second letter, etc.

Cantor’s insight was that same idea works with
infinite lists. . .
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The Subsets of N are Uncountable

For set S, let P(S) denote the set of all subsets
of S.

Cantor’s Theorem. The set P(N) is not count-
able.

Proof by Contradiction. Suppose P(N) is count-
able. That means we can write down a list of all
the subsets of N. . .
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An Alleged List of the Subsets

Maybe the list starts:
1 – N
2 – {4, 7}
3 – {2, 4, 6, 8, . . .}
4 – ∅

...

That is, we have function f :N→ P(N) that maps
numbers to subsets such that every subset ap-
pears in the list.

Goddard 14a: 14



Proof Continued

Now, define set T : For each number i, look up
f (i) and add i to T if i /∈ f (i).

But: T is not on list. It’s not f (1), because T and
f (1) differ on 1 (by definition 1 ∈ T ⇐⇒ 1 /∈ f (1)).
And it’s not f (2), because T and f (2) differ on 2.
And so on. That is, f is a lie; it does not use up
the sets in P(N).

This contradiction can mean only one thing: such
a list does not exist.
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Immediate Implications

Fact. 1) For any alphabet, the set of TMs is
countable.
2) For any alphabet, the set of languages is un-
countable.

The set of TMs is countable because each TM
can be represented by a binary number and hence
as an integer.

However, the subsets of the integers are not count-
able and hence the number of languages is un-
countable.
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Cantor’s Theorem Again

Another version of Cantor’s theorem is:

Cantor’s Theorem Revisited. The reals are
uncountable.

Consider only the reals at least 0 and less than 1.
Each of these can be written as infinite binary
expansion (appending 0’s if needed).

Suppose one had list L of all the real numbers
between 0 and 1. . .
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The Alleged List of Reals

Say the list L is r1, r2, . . .. Then produce a real
number ω by the following recipe:

The ith bit of ω is opposite of ith bit of ri.

For example if list were as follows, ω would be
.10100 . . ..

r1 . 0 0 0 1 1 0 · · ·
r2 . 1 1 0 0 1 1 · · ·
r3 . 0 1 0 1 0 1 · · ·
r4 . 1 1 1 1 1 1 · · ·
r5 . 0 0 1 0 1 1 · · ·

...
...
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ω is Not on the List

Now, ω is binary expansion of some real number
between 0 and 1, but it is not on the list. Well,
it’s not r1, because they are different in first bit.
It’s not r2, because they are different in second
bit, and so on.

In short, the claim that L was complete was
nonsense. That is, there cannot be a list with
all binary numbers on it: the set of reals is un-
countable.
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Summary

A set is countable if it can be placed in 1–1 cor-
respondence with the positive integers. Cantor
showed by diagonalization that the set of sub-
sets of the integers is not countable, as is the
set of infinite binary sequences. Every TM has
an encoding as a finite binary string. An infinite
language corresponds to an infinite binary se-
quence; hence almost all languages are not r.e.
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