Diagonalization and
the Halting Problem

We use diagonalization to prove that some
languages are hard.



The Goal Again

Is there for every problem an algorithm: that
is, some procedure that gives the right answer,
is clear and completely described, and is guar-
anteed to terminate? Is there a TM for every
language?

Goddard 14b: 2



Do Not Read This

Goddard 14b: 3



Example: Self-Denial

Define the self-denying machines by
Stm = { (M) : M is TM not accepting (M) }

Note that S, is a valid language. If we were
omniscient, we could see whether w is in Sy, by
parsing w as a TM, and then checking whether
that TM accepted w.

Goddard 14b: 4



The Language S,,, is Not R.e.

Self-denial. S;,, is not r.e.

Proof by Contradiction. Suppose some TM ac-
cepts this language: call it M.

Does M’ accept string (M')? Well, (M) is in Sy,
if and only if M’ does not accept (M'). That is,
M’ accepts (M') if and only if M’ does not ac-

cept (M),

A contradiction. Since the logic is correct, the
problem is the supposition: M’ does not exist.

Goddard 14b: 5



Diagonalization in TMs

Here’s the diagonalization argument in TMs. Re-
call that we encode a TM in binary; thus we can
list them in lexicographic (dictionary) order.

Goddard 14b: 6



Diagonalization in TMs

Create a table with each row labeled by a TM
and each column labeled by a string that en-
codes a TM. The entries say whether TM M, ac-
cepts the string (M;).

(Mo) (M7) (M) ...
My Acc Not Not
My| Not Not Not
My Not Acc Acc

Goddard 14b: 7



Diagonalization Produces Non-R.e. Language

Now apply diagonalization; that is, go down the
diagonal and change every Acc to a Not and vice
versa. If one writes down all those strings that
now have an Acc on diagonal, one has a lan-
guage. This language is. .. Sy, the self-denying
machines.

But this diagonal is different from every row.
That is, this diagonal behaves differently from
every TM. That is, the language is not the lan-
guage of any TM.

Goddard 14b: 8



The Acceptance Problem

It would be useful to have an algorithm that
takes as input a TM and string, and tells one

whether the TM will halt on that input. Unfor-
tunately, such an algorithm does not exist.

Goddard 14b: 9



The Acceptance Problem

Define Ay, = { (M, w) : M is TM that accepts w }.

It is easy to show by simulation that:

Ay, 1S TE.

Goddard 14b: 10




The Acceptance Problem is Undecidable

Theorem. A;, is not recursive. That is, the
acceptance problem is undecidable.

The theorem says that one cannot build a TM
that will always halt and tell one whether a given
machine accepts a given word or not. Using
Church’s thesis, this means that there is no
algorithm that one can use to test beforehand
whether a given machine/program on given in-
put will halt.

We give two proofs.

Goddard 14b: 11



Proof by Diagonalization

To prove that Ay, is undecidable, we build a
TM D that for every : does the opposite of ;i
machine on input (M;). So when we try to find
D on our list of TMs, it is not there!

Suppose there were machine H that on every
input (M,w) would tell one whether or not M
accepted w. Then, build a new TM D. ..

Goddard 14b: 12



Building a New TM

Build a new TM D that does the following:

D: On input w
1. Determine the TM S that w encodes.

2. Run H on (S, w).
3. If H accepts then reject; else accept.

Goddard 14b: 13



A Contradiction

But wait. What happens if input is description
of D, say v’ = (D) (not that D notices)?

Well, D writes (D,w’) on the tape, and feeds
to H. It H says accept, then D rejects, and
vice versa. That is, if H claims that D accepts
w' = (D), then D rejects w'. If H says D rejects
w' = (D), then D accepts w’. Huh?

This is a contradiction. Everything we did was
fine except possibly that H exists. Conclusion:
H does not exist.

Goddard 14b: 14



Alternative Proof

Suppose there were TM H that decided Ay,,. Then
one could use H as a subroutine to decide the
language S;,,. But that language is not recur-
sive. Contradiction.

Goddard 14b: 15



The Halting Problem is Undecidable

[t is no easier if all you want to know is whether
the program will halt or not—called the halting
problem.

For, one can easily adjust a TM so that instead
of entering h, to reject, it enters a state that
keeps its head moving to the right forever. Solv-
ing the halting problem is thus just as hard as
solving the acceptance problem. That is, the
halting problem is undecidable.

Goddard 14b: 16



Summary

The language S, (self-denial) is not r.e. The ac-

ceptance language A, and the halting problem

are r.e. but not recursive. The proof uses self-
reference.

Goddard 14b: 17



