Reductions

We prove questions are undecidable by
showing that answering the new question
would enable one to decide a question
we already know is undecidable.



Reductions

Recall that a T-computable function is a func-
tion from strings to strings for which there is a
TM. Let A, B be languages. We say that A is
reducible to B, written A <,,, B, if there is a T-
computable function f such that w € A exactly
when f(w) € B.

Goddard 15a: 2



Reductions Preserve Hardness

Fact.

a) If A is reducible to B and B is recursive, then
A is recursive.

b) If A is reducible to B and A is not recursive,
then B is not recursive.

Proof (of a). Let TM R decide language B, and
let function f reduce A to B. Construct TM S
as follows: On input w, it computes f(w) and

submits this to R; then it accepts if R accepts.
So S decides A.

Goddard 15a: 3



Why The Notation <?

The above fact shows if one writes A <,,, B, then
B is as least as hard as A. This relationship
behaves as one would expect. For example:

Fact. For any languages A, Band C: If A <,, B
and B <,, C, then A <,,, C.

If f reduces A to B and g reduces B to C, then h
defined by h(w) = g(f(w)) reduces A to C.

Goddard 15a: 4



Practice

Show that for any languages A and B: If A <,,, B

then A <,, B.

Goddard 15a: 5



Solution to Practice

The same reduction works! If function f re-
duces A to B, then it maps A to B and A to B.

Goddard 15a: 6



State-Use is Undecidable

Consider the problem of determining whether a
TM on input w ever enters a particular state q
(called the state-use problem).

We reduce the acceptance problem Ay, to this.

Goddard 15a: 7



State-Use is Undecidable

Suppose one has algorithm for state-use prob-
lem. Then modify it into an algorithm for A,,:
Take input (M,w) to the acceptance problem.
Then introduce a new state ¢’ and adjust M so
that any transition leading to 5, leads to ¢’ in-
stead. Then answering whether M uses ¢ on w
is equivalent to answering whether M accepts w.
This we know is undecidable.

Goddard 15a: 8



Acceptance of Blank Tape is Undecidable

Ay ={ (M) : M accepts ¢ } is not recursive.

The prootf is to reduce A, to Ay.

Goddard 15a: 9



Acceptance of Blank Tape is Undecidable

The proof is to reduce Ay, to Ay,. That is, given
T™™ M and string w, we build new TM M,,. The
reduction f is f((M,w)) = (M,,) where M, is pro-
grammed to:

(1) erase its input; (2) write w on the tape;
(3) pass it to M; and (4) accept exactly when
M accepts.

So M,, accepts ¢ exactly when (M, w) € Asy,.

Goddard 15a: 10



Conclusion

Hence, if we could answer questions about Ay,
we would be able to answer questions about
Asm, Which we know is undecidable.

Here is a visualization: the outer box does Ay,
if we have a decider for Ay,.

decide
M,, on ¢

generate My,

Yes

No

Goddard 15a: 11



Practice

Show that it is undecidable whether a TM ever
writes a particular symbol on the tape.

Goddard 15a: 12



Solution to Practice

Assume we have TM M and string w. Construct
a new machine M,,. The TM M,, is programmed
to erase its input, write w on the tape, and pass
this over to M. If M accepts, then M,, writes a
special symbol, say $ on the tape. Thus if one
could answer the question whether M, writes $
or not, one would be able to decide A;,,, which
is undecidable.

Goddard 15a: 13



Rice’s Theorem

Actually, most questions about TMs are unde-
cidable:

Rice’'s Theorem. Any question about r.e. lan-
guages that is nontrivial is undecidable.

Nontrivial means there is some language for
which the answer is “yes” and some for which
the answer is “no”. We omit the beautiful but
simple reduction.

Goddard 15a: 14



Summary

A reduction is a mapping that preserves mem-

bership. A reduction can be used to show that

one problem is undecidable given the undecid-

ability of another problem. Some problems about
TMs are proven undecidable by reduction from

the acceptance problem Ayy,.

Goddard 15a: 15



