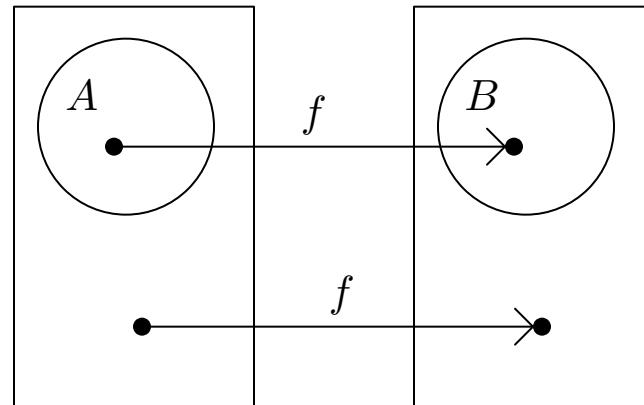


Reductions

We prove questions are undecidable by showing that answering the new question would enable one to decide a question we already know is undecidable.

Reductions

Recall that a T-computable function is a function from strings to strings for which there is a TM. Let A, B be languages. We say that A is **reducible** to B , written $A \leq_m B$, if there is a T-computable function f such that $w \in A$ exactly when $f(w) \in B$.



Reductions Preserve Hardness

Fact.

- a) If A is reducible to B and B is recursive, then A is recursive.*
- b) If A is reducible to B and A is not recursive, then B is not recursive.*

Proof (of a). Let TM R decide language B , and let function f reduce A to B . Construct TM S as follows: On input w , it computes $f(w)$ and submits this to R ; then it accepts if R accepts. So S decides A .

Why The Notation \leq ?

The above fact shows if one writes $A \leq_m B$, then B is as least as hard as A . This relationship behaves as one would expect. For example:

Fact. *For any languages A , B and C : If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.*

If f reduces A to B and g reduces B to C , then h defined by $h(w) = g(f(w))$ reduces A to C .

Practice

Show that for any languages A and B : If $A \leq_m B$ then $\bar{A} \leq_m \bar{B}$.

Solution to Practice

The same reduction works! If function f reduces A to B , then it maps A to B and \bar{A} to \bar{B} .

State-Use is Undecidable

Consider the problem of determining whether a TM on input w ever enters a particular state q (called the **state-use** problem).

We reduce the acceptance problem A_{tm} to this.

State-Use is Undecidable

Suppose one has algorithm for state-use problem. Then modify it into an algorithm for A_{tm} : Take input $\langle M, w \rangle$ to the acceptance problem. Then introduce a new state q' and adjust M so that any transition leading to h_a leads to q' instead. Then answering whether M uses q' on w is equivalent to answering whether M accepts w . This we know is undecidable.

Acceptance of Blank Tape is Undecidable

$A_{bt} = \{ \langle M \rangle : M \text{ accepts } \varepsilon \}$ is not recursive.

The proof is to reduce A_{tm} to A_{bt} .

Acceptance of Blank Tape is Undecidable

The proof is to reduce A_{tm} to A_{bt} . That is, given TM M and string w , we build new TM M_w . The reduction f is $f(\langle M, w \rangle) = \langle M_w \rangle$ where M_w is programmed to:

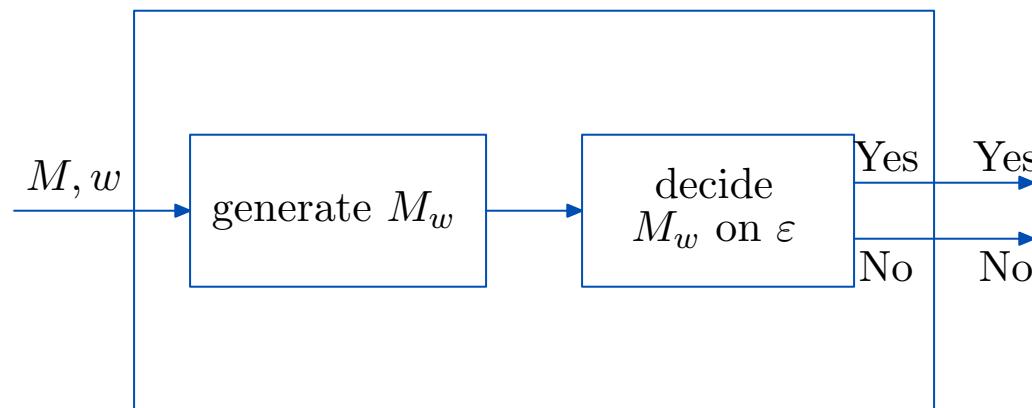
- (1) erase its input; (2) write w on the tape;
- (3) pass it to M ; and (4) accept exactly when M accepts.

So M_w accepts ϵ exactly when $\langle M, w \rangle \in A_{tm}$.

Conclusion

Hence, if we could answer questions about A_{bt} , we would be able to answer questions about A_{tm} , which we know is undecidable.

Here is a visualization: the outer box does A_{tm} if we have a decider for A_{bt} .



Practice

Show that it is undecidable whether a TM ever writes a particular symbol on the tape.

Solution to Practice

Assume we have TM M and string w . Construct a new machine M_w . The TM M_w is programmed to erase its input, write w on the tape, and pass this over to M . If M accepts, then M_w writes a special symbol, say $\$$ on the tape. Thus if one could answer the question whether M_w writes $\$$ or not, one would be able to decide A_{tm} , which is undecidable.

Rice's Theorem

Actually, most questions about TMs are undecidable:

Rice's Theorem. *Any question about r.e. languages that is nontrivial is undecidable.*

Nontrivial means there is some language for which the answer is “yes” and some for which the answer is “no”. We omit the beautiful but simple reduction.

Summary

A reduction is a mapping that preserves membership. A reduction can be used to show that one problem is undecidable given the undecidability of another problem. Some problems about TMs are proven undecidable by reduction from the acceptance problem A_{tm} .