Reductions

Recall that a T-computable function is a func-
tion from strings to strings for which there is a
TM. Let A, B be languages. We say that A is
reducible to B, written A <,, B, if there is a T-
computable function f such that w € A exactly
when f(w) € B.

Goddard 15a: 2



Reductions Preserve Hardness

Fact.

a) If A is reducible to B and B is recursive, then
A is recursive.

b) If A is reducible to B and A is not recursive,
then B is not recursive.

Proof (of a). Let TM R decide language B, and
let function f reduce A to B. Construct TM S
as follows: On input w, it computes f(w) and

submits this to R; then it accepts if R accepts.
So S decides A.

Goddard 15a: 3



Why The Notation <?

The above fact shows if one writes A <,,, B, then
B is as least as hard as A. This relationship
behaves as one would expect. For example:

Fact. For any languages A, Band C: If A <,, B
and B <,, C, then A <,,, C.

If f reduces A to B and g reduces B to C, then h
defined by h(w) = g(f(w)) reduces A to C.

Goddard 15a: 4



Practice

Show that for any languages A and B: If A <,,, B

then A <,, B.

Goddard 15a: 5



Solution to Practice

The same reduction works! If function f re-
duces A to B, then it maps A to B and A to B.

Goddard 15a: 6



