
Reductions

Recall that a T-computable function is a func-
tion from strings to strings for which there is a
TM. Let A, B be languages. We say that A is
reducible to B, written A m B, if there is a T-
computable function f such that w 2 A exactly
when f (w) 2 B.

A Bf

f

Goddard 15a: 2



Reductions Preserve Hardness

Fact.
a) If A is reducible to B and B is recursive, then

A is recursive.

b) If A is reducible to B and A is not recursive,

then B is not recursive.

Proof (of a). Let TM R decide language B, and
let function f reduce A to B. Construct TM S
as follows: On input w, it computes f (w) and
submits this to R; then it accepts if R accepts.
So S decides A.

Goddard 15a: 3



Why The Notation ?

The above fact shows if one writes A m B, then
B is as least as hard as A. This relationship
behaves as one would expect. For example:

Fact. For any languages A, B and C: If A m B
and B m C, then A m C.

If f reduces A to B and g reduces B to C, then h
defined by h(w) = g(f (w)) reduces A to C.

Goddard 15a: 4



Practice

Show that for any languages A and B: If A m B
then Ā m B̄.

Goddard 15a: 5



Solution to Practice

The same reduction works! If function f re-
duces A to B, then it maps A to B and Ā to B̄.

Goddard 15a: 6


