The Class NP

NP is the problems that can be solved in
polynomial time by a nondeterministic machine.

NP

The time taken by nondeterministic TM is the
length of the longest branch.

The collection of all problems that can be solved

in polynomial time by a nondeterministic ma-
chine is called NP.

That is, language L € NP if there is £ and an
NTM that decides L that runs in time O(n").

Goddard 17b: 2

P versus NP

It is immediate that
P C NP

But does nondeterminism buy one anything?

Goddard 17b: 3

Example: HAMPATH

HAMPATH = { (G, a,b) : G is graph with
hamiltonian path from a to b}

We do not know how to decide HAMPATH in poly-
nomial time. (Trying all possible paths fails,
as there are exponentially many.) But there is
a fast nondeterministic program. Guess path
node by node, at each stage choosing an unvis-
ited node. Time taken is at most quadratic in
the number of nodes. And so HAMPATH is in NP.

Goddard 17b: 4

One Limit of Nondeterminism

Theorem. Let L be recursive language. If there
is nondeterministic TM for L that runs in time

T(n), then there is deterministic TM for L that
runs in time O(CT(”>) for some constant C.

Proof. Say L is accepted by NTM N. In the time
available, N can access at most T'(n) cells. So,
the number of configurations of N is at most
X = qngT<”> where ¢ is the alphabet size and ¢
the number of states. ..

Goddard 17b: 5

Proof Continued

Thus, generate all possible configurations. De-
termine which configurations follow which. Then
see if there is a path from the starting configu-
ration to an accepting configuration. The result

runs in time polynomial in X, which gives the
result.

Goddard 17b: 6

Certificates

One can reprogram an NTM to start by nonde-
terministically writing an arbitrary string on a
special tape called the certificate-tape. After
that, it runs deterministically: when it has to
make a nondeterministic choice, it looks up its
next move on the certificate-tape.

Goddard 17b: 7

Example: HAMPATH

The certificate for HAMPATH is the hamiltonian path.
All the program has to do is to check that the
edges form a path (end of one is start of next),

that the path starts at ¢ and ends at b, and that
each node is visited exactly once.

Goddard 17b: 8

Prover and Verifier

So we have Prover/Verifier situation. The prob-
lem can be decided by a Verifier in polynomial
time if given a hint from an omniscient Prover.

Note that the correct answer is made. If there is
hamiltonian path, then correct hint will be veri-
fied and Verifier will say yes; if there is no hamil-
tonian path, then Verifier cannot be conned into
saying yes.

Goddard 17b: 9

Example: Satisfiability

In boolean formulas, a clause is the or of liter-
als. A formula is in conjunctive normal form
if the and of clauses.

A satisfying assignment is one that makes the
formula TRUE. For example,
rA(xVyVZ)A(ZVy)

is in conjunctive normal form and is satisfiable:
set r to TRUE and v, z to FALSE.

Goddard 17b: 10

Example: SAT

SAT = { (¢) : ¢ is a boolean formula in con-
junctive normal form having a satisfying as-
signment }.

SAT € NP. The certificate is the assignment.
However, the number of assignments in expo-
nential, so there is no obvious polynomial-time

algorithm.

Goddard 17b: 11

Primes and Composites

Consider the question of checking whether a
number is prime or of finding a factorization.

Note that an integer m is input in binary; thus
length of input is logy m. That is, we want algo-
rithms that run in time polynomial in the num-
ber of bits.

PRIME is the set of prime numbers (in binary) and
COMPOSITE is the set of composite numbers.

Goddard 17b: 12

Primes and Composites

Clearly COMPOSITE € NP: simply guess a split into
two factors and then verify by multiplying. From
elementary number theory comes a certificate
for primeness, so PRIME € NP.

Recently, it was shown that PRIME is in P, and
hence so is COMPOSITE, since P, being determin-
istic, is closed under complementation. Never-
theless, there is still no polynomial-time algo-
rithm known for determining the factorization
of a composite number.

Goddard 17b: 13

Example: SUBSET SUM

In the SUBSET SUM problem, one is given a collec-
tion of numbers in binary, and a target. The
question is: is there a subset of the numbers
that adds up to the target.

The obvious certificate works: the certificate lists
the correct numbers to take. The checker has
only to sum the numbers and compare.

Goddard 17b: 14

P versus NP

Maybe P and NP are different sets. However, we
do not know.

Conjecture. P # NP

The Clay Institute offers $1 million for a proof
or disproof.

Goddard 17b: 15

Consequences

One can, however, identify problems that are
the hardest in NP, called NP-complete prob-
lems. They have the property that, if there is a
polynomial-time algorithm for any one of them,

then there is a polynomial-time algorithm for all
of NP.

There are numerous NP-complete problems that
industry would love to solve quickly. But, al-
most all cryptography assumes that decoding
without the secret key is harder than decoding
with the secret key, which might not be true if
P = NP.

Goddard 17b: 16

Summary

The class NP is the set of all languages that are
decidable by a nondeterministic TM running in
polynomial time. Such a machine is equivalent
to a deterministic machine that is handed a cer-
tificate to verify the answer.

Goddard 17b: 17

