

\mathcal{NP} -Completeness

We consider the hardest problems in \mathcal{NP} .

Reductions Revisited

A function f (mapping strings to strings) is ***polynomial-time computable*** if there is constant k and TM that computes f in $O(n^k)$ time.

A language A is ***polynomial-time reducible*** to language B , if A is reducible to B via a polynomial-time computable function. Written $A \leq_p B$.

Reductions Preserve Hardness

The key result is as before:

Fact. *a) If $A \leq_p B$ and B in \mathcal{P} , then A in \mathcal{P} .*
b) If $A \leq_p B$ and A not in \mathcal{P} , then B not in \mathcal{P} .

Proof (of a). Say reduction from A to B given by f computable in $O(n^k)$ time, and one can decide membership in B in $O(n^\ell)$ time.

Then build the obvious decider for A : it takes input w , computes $f(w)$ and sees whether $f(w) \in B$. This runs in $O(n^{k\ell})$ time.

\mathcal{NP} -Complete

Definition. Language S is **\mathcal{NP} -complete** if

- a) $S \in \mathcal{NP}$; and
- b) for all A in \mathcal{NP} it holds that $A \leq_P S$.

Note that this means that:

If S is \mathcal{NP} -complete and S in \mathcal{P} , then $\mathcal{P} = \mathcal{NP}$.

The First Theorem

There are many \mathcal{NP} -complete problems. What started the whole process was the great idea:

Cook's Theorem. SAT *is* \mathcal{NP} -complete.

We omit the proof.

Examples

- HAMPATH is \mathcal{NP} -complete.
- SUBSET_SUM is \mathcal{NP} -complete.

(Proof of latter later.) We saw earlier that both are in \mathcal{NP} .

More Graph Terminology

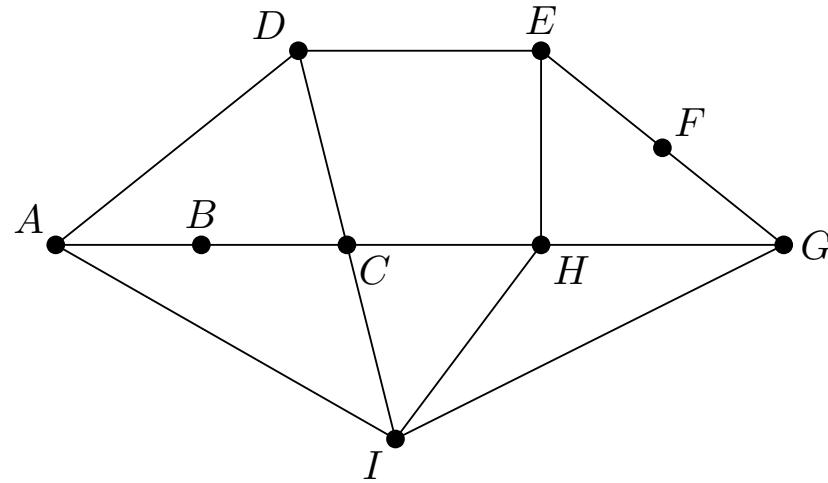
A set of nodes C is a ***clique*** if every two nodes in C are joined by an edge.

A set of nodes D is a ***dominating set*** if every other node is adjacent to at least one node in D .

A set of nodes V is a ***vertex cover*** if the removal of V destroys every edge.

Example Graph

Here $\{C, H, I\}$ is clique, $\{A, C, F\}$ is dominating set, and $\{A, C, E, G, I\}$ is vertex cover.



Example Graph Problems

We write our examples as decision problems.
The following are \mathcal{NP} -complete:

The CLIQUE problem:

Input: graph G and integer k

Question: is there clique of at least k nodes?

The DOMINATION problem:

Input: graph G and integer k

Question: is there dominating set of at most k nodes?

The VERTEX_COVER problem:

Input: graph G and integer k

Question: is there vertex cover of at most k nodes?

3SAT is \mathcal{NP} -complete

The 3SAT problem is \mathcal{NP} -complete:

Input: ϕ a boolean formula in conjunctive normal form with 3 literals per clause (**3CNF**).

Question: is there a satisfying assignment?

Summary

The \mathcal{NP} -complete languages are the hardest languages in \mathcal{NP} and every language in \mathcal{NP} polynomially reduces to these. Examples of \mathcal{NP} -complete languages include SAT and HAMPATH.