

Regular Expressions

*A regular expression describes a language
using three operations.*

Regular Expressions

A ***regular expression*** (RE) describes a language.

It uses the three ***regular*** operations. These are called ***union/or***, ***concatenation*** and ***star***.

Brackets (and) are used for grouping, just as in normal math.

Union

The symbol $+$ means ***union*** or ***or***.

Example:

$0 + 1$

means either a zero or a one.

Concatenation

The **concatenation** of two REs is obtained by writing the one after the other.

Example:

$$(0 + 1) 0$$

corresponds to $\{00, 10\}$.

$$(0 + 1) (0 + \varepsilon)$$

corresponds to $\{00, 0, 10, 1\}$.

Star

The symbol $*$ is pronounced star and means zero or more copies.

Example:

a^*

corresponds to any string of a 's: $\{\epsilon, a, aa, aaa, \dots\}$.

$(0 + 1)^*$

corresponds to all binary strings.

Example

An RE for the language of all binary strings of length at least 2 that begin and end in the same symbol.

Example

An RE for the language of all binary strings of length at least 2 that begin and end in the same symbol.

$$0(0+1)^*0 + 1(0+1)^*1$$

Note ***precedence*** of regular operators: *star* always refers to smallest piece it can, *or* to largest piece it can.

Example

Consider the regular expression

$$((0 + 1)^* 1 + \varepsilon) (00)^* 00$$

Example

Consider the regular expression

$$((0 + 1)^* 1 + \varepsilon) (00)^* 00$$

This RE is for the set of all binary strings that end with an even nonzero number of 0's.

Note that different language to:

$$(0 + 1)^* (00)^* 00$$

Regular Operators for Languages

If one forms RE by the **or** of REs R and S , then result is union of R and S .

If one forms RE by the **concatenation** of REs R and S , then the result is all strings that can be formed by taking one string from R and one string from S and concatenating.

If one forms RE by taking the **star** of RE R , then the result is all strings that can be formed by taking any number of strings from the language of R (possibly the same, possibly differ-

ent), and concatenating.

Regular Operators Example

If language L is $\{\text{ma}, \text{pa}\}$ and language M is $\{\text{be}, \text{bop}\}$, then

$L + M$ is $\{\text{ma}, \text{pa}, \text{be}, \text{bop}\}$;

LM is $\{\text{mabe}, \text{mabop}, \text{pabe}, \text{pabop}\}$; and

L^* is $\{\varepsilon, \text{ma}, \text{pa}, \text{mama}, \dots, \text{pamamapa}, \dots\}$.

Notation: If Σ is some alphabet, then Σ^* is the set of all strings using that alphabet.

An RE for Decimal Numbers

English: “Some digits followed maybe by a point and some more digits.”

RE:

$$(- + \varepsilon) \text{ D D}^* (\varepsilon + . \text{ D D}^*)$$

where **D** stands for a digit.

(Thanks to Lorenzo Swank for pointing out error in book.)

Kleene's Theorem

Kleene's Theorem. *There is an FA for a language if and only there is an RE for the language.*

Proof (to come) is algorithmic.

Regular language is one accepted by some FA or described by an RE.

Applications of REs

- Specify piece of programming language, e.g. real number. This allows automated production of **tokenizer** for identifying the pieces.
- Complex search and replace.
- Many UNIX commands take regular expressions.

Practice

Give an RE for each of the following three languages:

1. All binary strings with at least one 0
2. All binary strings with at most one 0
3. All binary strings starting and ending with 0

Solutions to Practice

$$1. (0 + 1)^* 0 (0 + 1)^*$$

$$2. 1^* + 1^* 0 1^*$$

$$3. 0 (0 + 1)^* 0 + 0$$

In each case several answers are possible.

Summary

A regular expression (RE) is built up from individual symbols using the three Kleene operators: union (+), concatenation, and star (*). The star of a language is obtained by all possible ways of concatenating strings of the language, repeats allowed; the empty string is always in the star of a language.