

Conversions Among FAs and REs

*We describe algorithms that convert among
NFAs, DFAs, and REs.*

Kleene's Theorem Revisited

Surprisingly perhaps, nondeterminism does not add to the power of a finite automaton:

Kleene's Theorem. *The following are equivalent for a language L :*

- (1) *There is a DFA for L .*
- (2) *There is an NFA for L .*
- (3) *There is an RE for L .*

This theorem is proved in three conversion algorithms:

$$(3) \Rightarrow (2) \Rightarrow (1) \Rightarrow (3).$$

Conversion From RE to NFA: Recursion

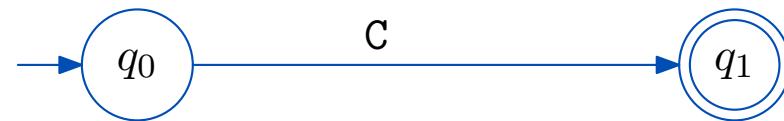
Conversion from RE to NFA uses a recursive construction.

Converting from RE to NFA.

- 0) *If RE empty string, then output simple NFA.*
- 1) *If RE single symbol, then output simple NFA.*
- 2) *If RE has form $A + B$, then combine NFAs for A and B .*
- 3) *If RE has form AB , then combine NFAs for A and B .*
- 4) *If RE has form A^* , then extend NFA for A .*

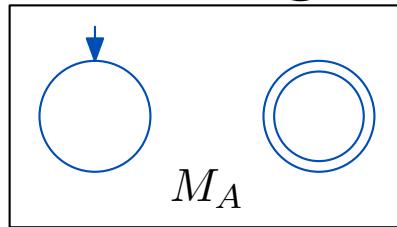
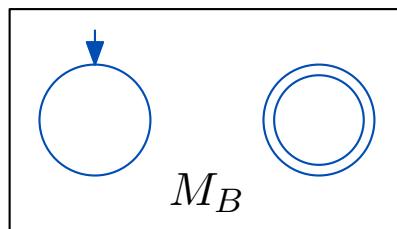
An NFA for a Single Char

An NFA for a single symbol c consists of two states:

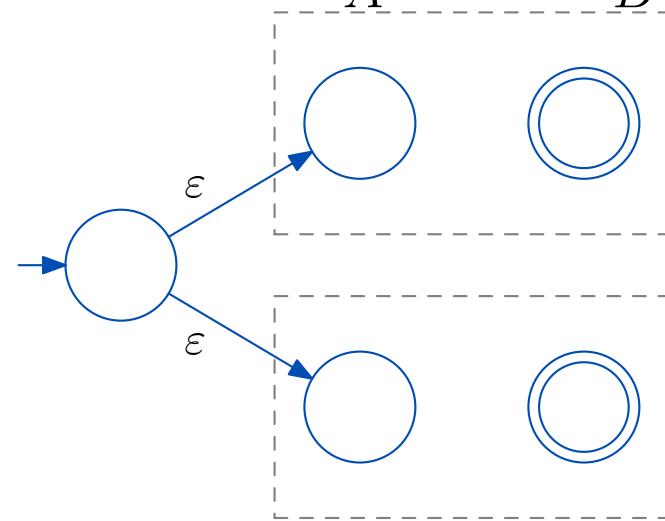


The Union of Two NFAs

Given NFA M_A for A and M_B for B , here is one for $A + B$. Add new start state with ε -transitions to the original start states of both M_A and M_B .



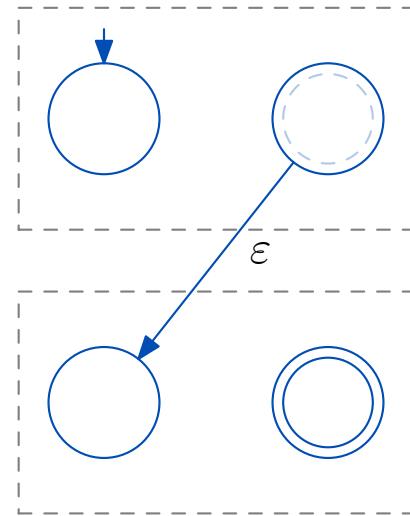
becomes



The machine guesses which of A or B the input is in.

The Concatenation of Two NFAs

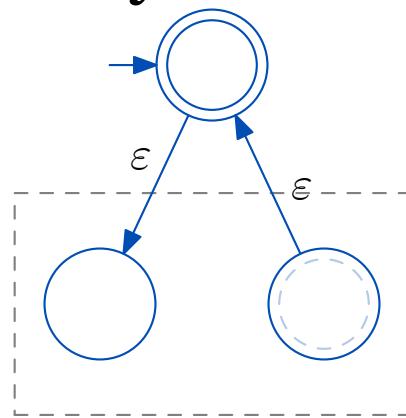
Here is one for AB . Start with NFAs M_A and M_B . First, put ϵ -transitions from accept states of M_A to start state of M_B . Then make original accept states of M_A reject.



The Star of an NFA

Here is one for A^* . The idea is to allow the machine to cycle from the accept state back to the start state; but we have to be careful.

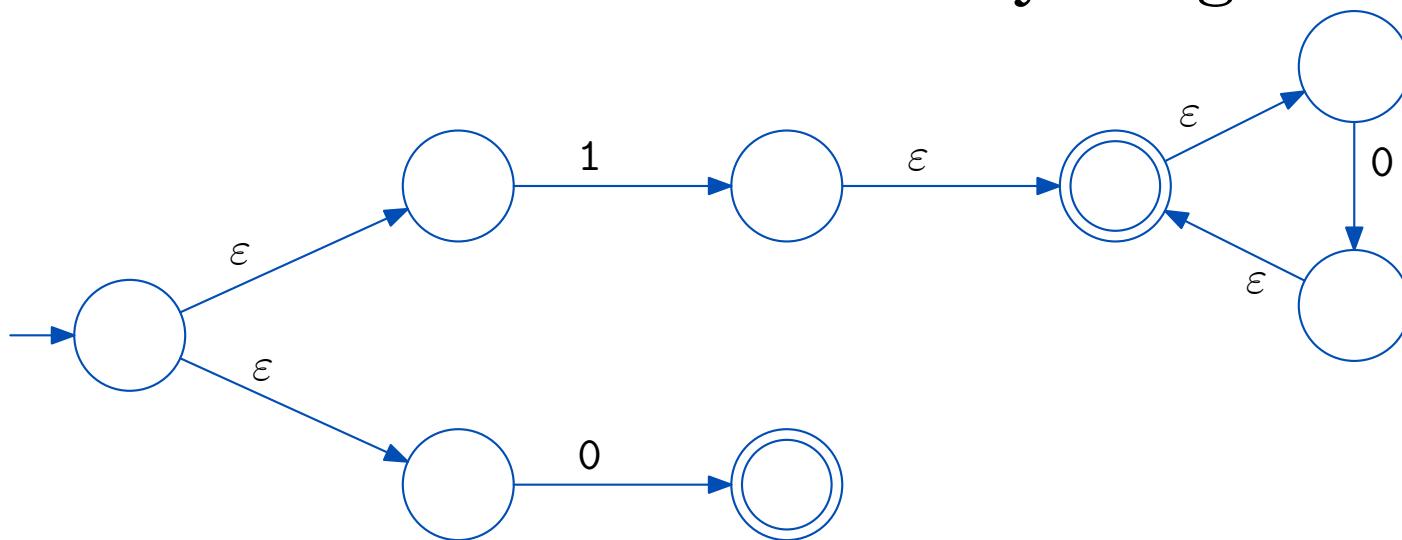
One way to go: build a new start state, which is the only accept state; then put ε -transition from it to old start state, and from old accept states to it; and change every old accept state to reject.



Example of Algorithm

Consider $0 + 10^*$

Build NFAs for the 0 , the 1 and the 0^* , then combine the latter two, and finally merge.



Note that resulting NFA can easily be simplified.

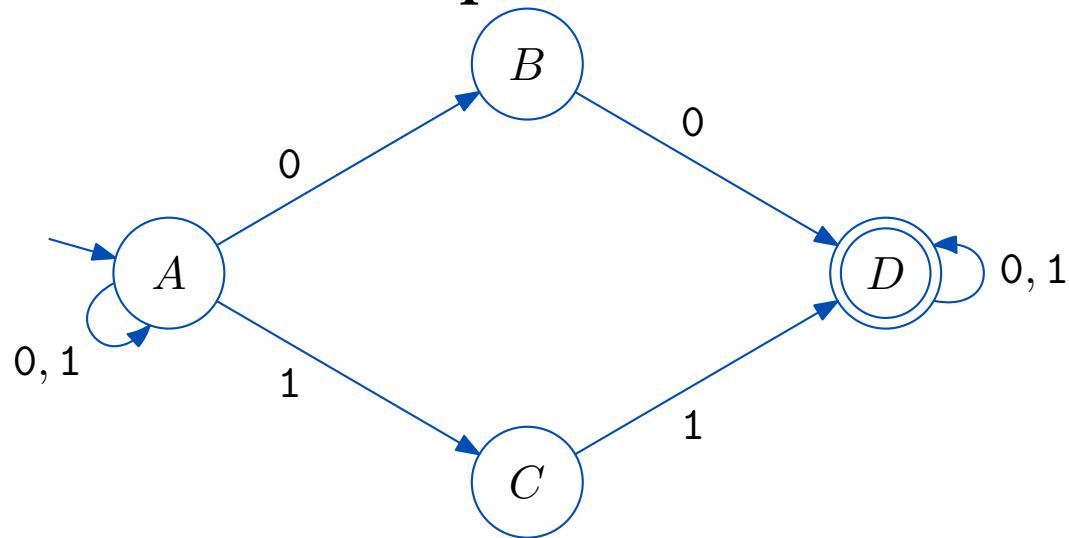
From NFA to DFA: Subset Construction

Converting from NFA to DFA uses the **subset construction**.

The idea is that to efficiently simulate an NFA on a string, one should at each step keep track of the **set of states** the NFA could be in. Note that one can determine the set at one step from the set at the previous step.

Example: Simulating an NFA

Consider 10100 as input to this NFA:



$\{A\} \xrightarrow{1} \{A, C\} \xrightarrow{0} \{A, B\} \xrightarrow{1} \{A, C\} \xrightarrow{0} \{A, B\} \xrightarrow{0} \{A, B, D\}$

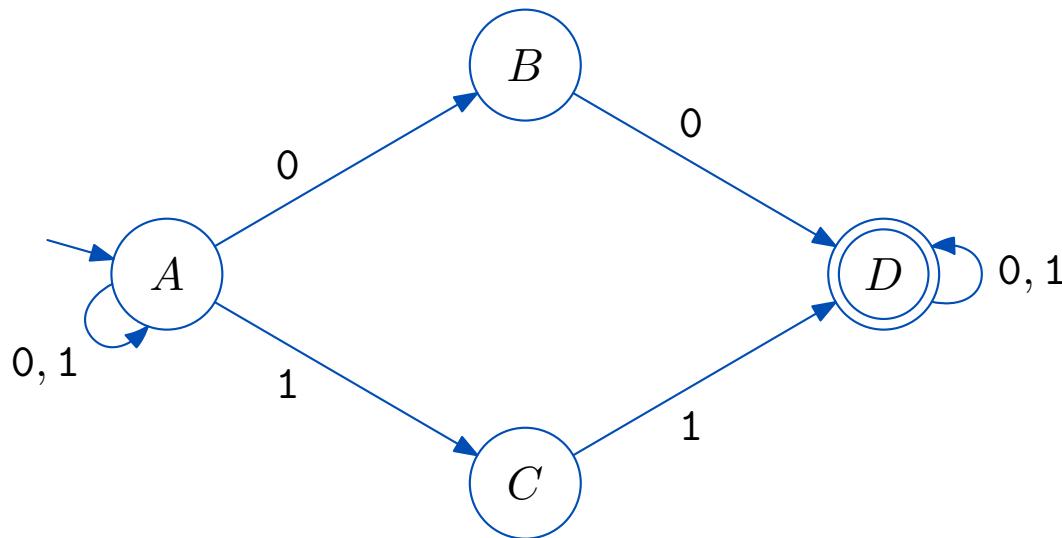
So accepts 10100 because it can be in accept state after reading the final symbol.

Conversion from NFA to DFA

From NFA (without ϵ -transitions) to DFA.

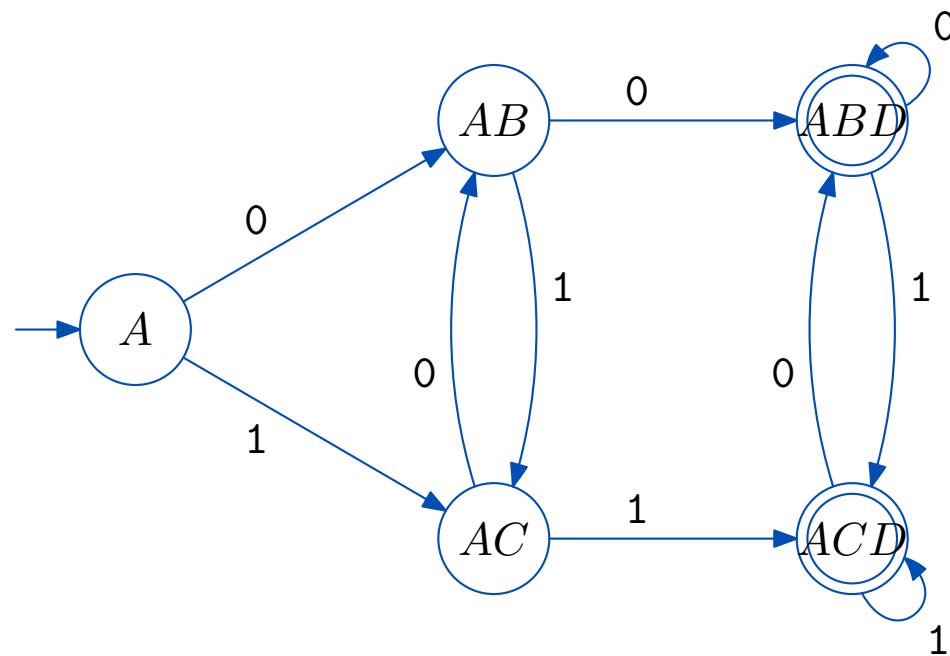
0. *Each state given by set of states from original.*
1. *Start state is labeled $\{q_0\}$ where q_0 was original start state.*
2. *While (some state of DFA is missing a transition) do:*
compute transition by combining the possibilities for each symbol in the set.
3. *Make into accept state any set that contains an original accept state.*

Example NFA



Suppose state of DFA was given by the set $\{A, B, D\}$. On 1, the NFA if in state A can go to states A or C , if in state B dies, and if in state D stays in state D . Thus on a 1 the DFA goes to $\{A, C, D\}$. This is an accept state of DFA because it has D .

And the DFA is



Need Closure for ϵ -Transitions

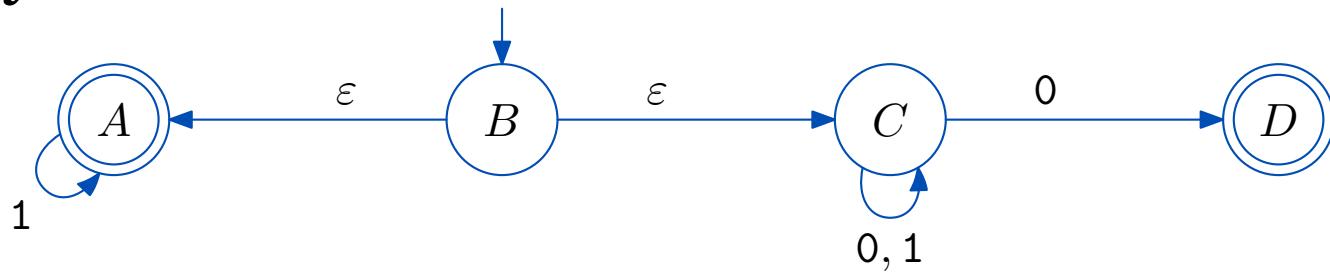
ϵ -transitions add a bit more work:

Conversion from NFA (with ϵ -transitions) to DFA. As before, except:

- 1) The start state becomes the old start state and every state reachable from it by ϵ -transitions.
- 2) When one calculates the states reachable, one includes all states reachable by ϵ -transitions **after** the destination state.

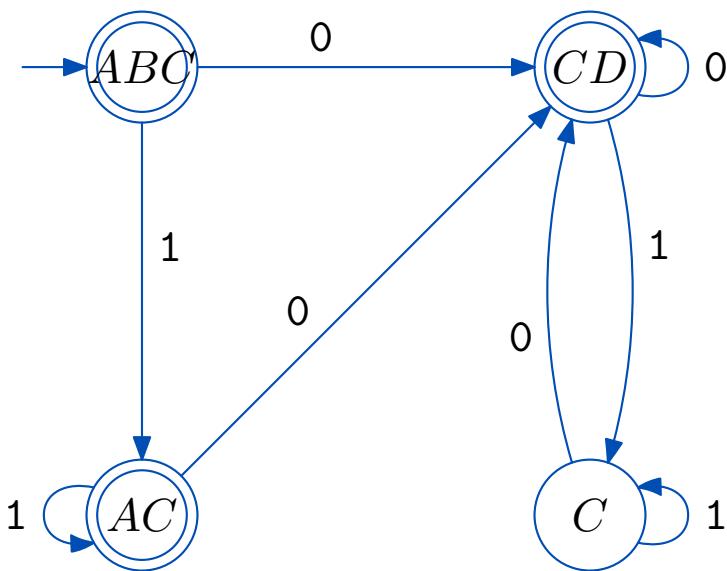
Example NFA

Recall the NFA that accepts all binary strings where the last symbol is 0 or which contain only 1's:



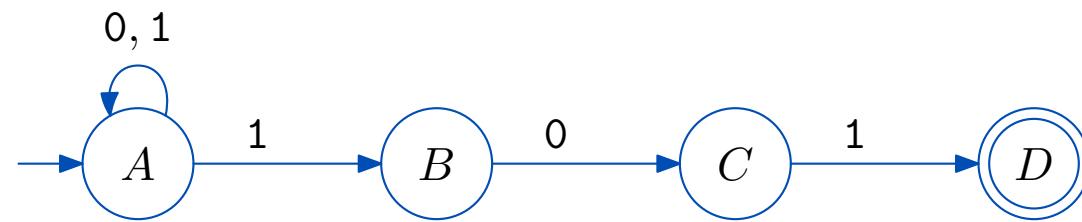
We apply the subset construction...

And the DFA is

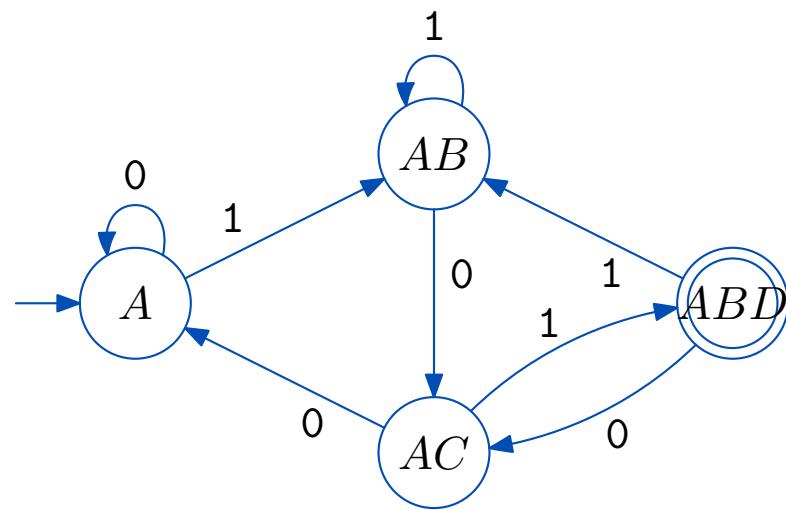


Practice

Convert the following NFA to a DFA using the subset construction:



Solution to Practice



Conversion From FA to RE

Finally, we show how to convert from FA to RE. One approach is to use a **generalized FA** (GFA): each transition is given by an RE.

We build a series of GFAs. At each step, one state (other than start or accept) is removed and replaced by transitions that have the same effect.

Removing a State

Say there is transition a from state 1 to state 2, transition b from state 2 to state 2 and transition c from state 2 to state 3.

One can achieve the same effect by a transition ab^*c from state 1 to state 3.

One must consider all transitions in and out of state 2 simultaneously.

Conversion From FA to RE: Summary

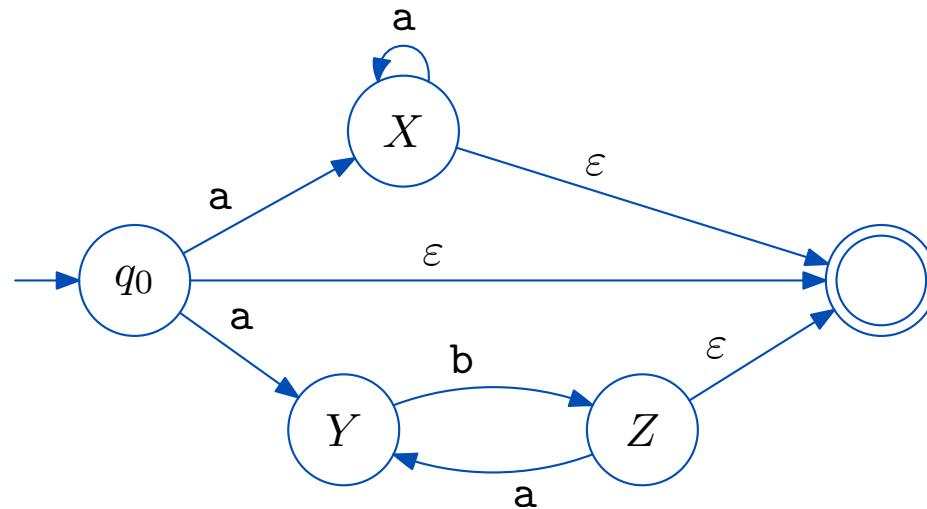
We assume unique accept state, no transition out of accept state, no transition into start state.

Conversion from FA to RE.

0. *Convert to FA of right form.*
1. *While (more than two states) do remove one state and replace by appropriate transitions.*
2. *Read RE off the remaining transition.*

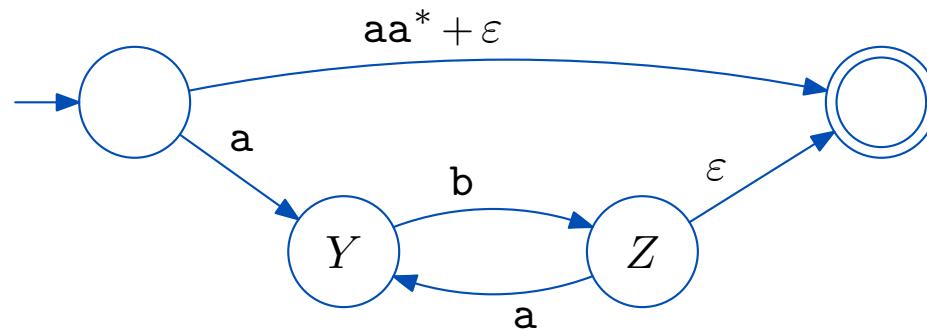
Example NFA

Here is the earlier NFA for $a^* + (ab)^*$ adjusted to have a unique accept state.



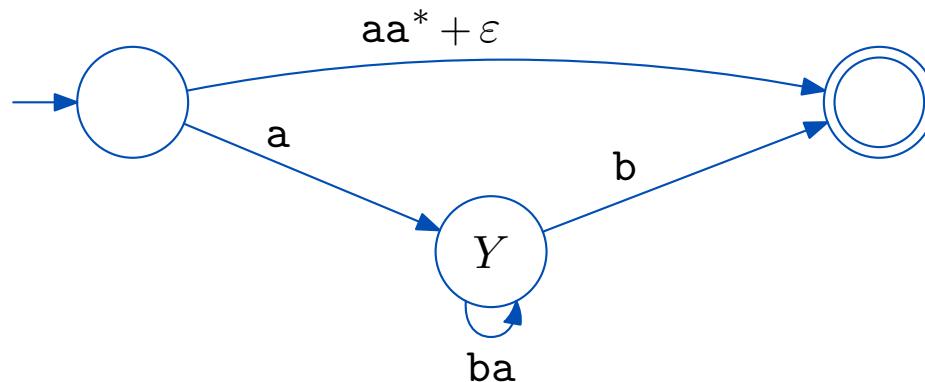
First Step

If we eliminate state X we get

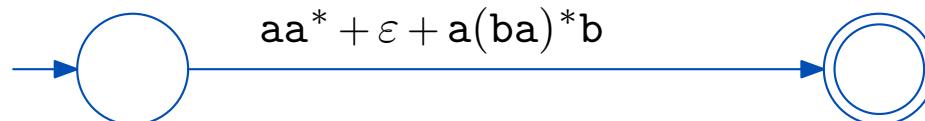


And Then

If we eliminate state Z we get

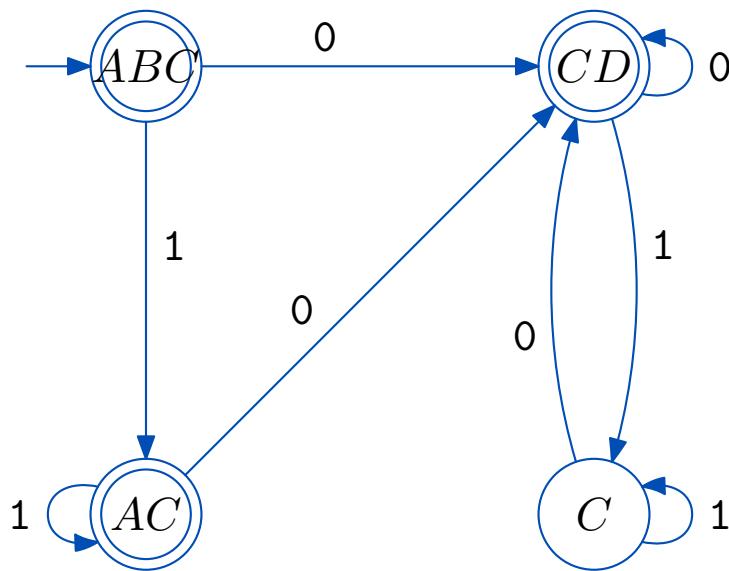


If we eliminate state Y we get



Practice

Convert that following DFA (from earlier) to an RE using the GFA method.



Solution to Practice

$$(0 + 11^*0)(0 + 11^*0)^* + \varepsilon + 11^*$$

Summary

Kleene's theorem says that the following are equivalent for a language: there is an FA for it; there is an NFA for it; and there is an RE for it. The proof provides an algorithm to convert from one form to another; the conversion from NFA to DFA is the subset construction.