

Closure Properties of Regular Languages

We show how to combine regular languages.

Closure Properties

A set is **closed** under an operation if applying that operation to any members of the set always yields a member of the set.

For example, the positive integers are closed under addition and multiplication, but not division.

Closure under Kleene

Fact. *The set of regular languages is closed under each Kleene operation.*

That is, if L_1 and L_2 are regular languages, then each of $L_1 \cup L_2$, $L_1 L_2$ and L_1^* is regular.

Proving Closure under Kleene

The easiest approach is to show that the REs for L_1 and L_2 can be combined or adjusted to form the RE for the combination language.

Example: The RE for L_1L_2 is obtained by writing down the RE for L_1 followed by the RE for L_2 .

Closure under Complementation

Fact. *The set of regular languages is closed under complementation.*

The complement of language L , written \overline{L} , is all strings not in L but with the same alphabet.

The statement says that if L is a regular language, then so is \overline{L} .

To see this fact, take **deterministic** FA for L and interchange the accept and reject states.

Closure under Intersection

Fact. *The set of regular languages is closed under intersection.*

One approach: Use de Morgan's law:

$$L_1 \cap L_2 = \overline{(\overline{L_1} \cup \overline{L_2})}$$

and that regular languages are closed under union and complementation.

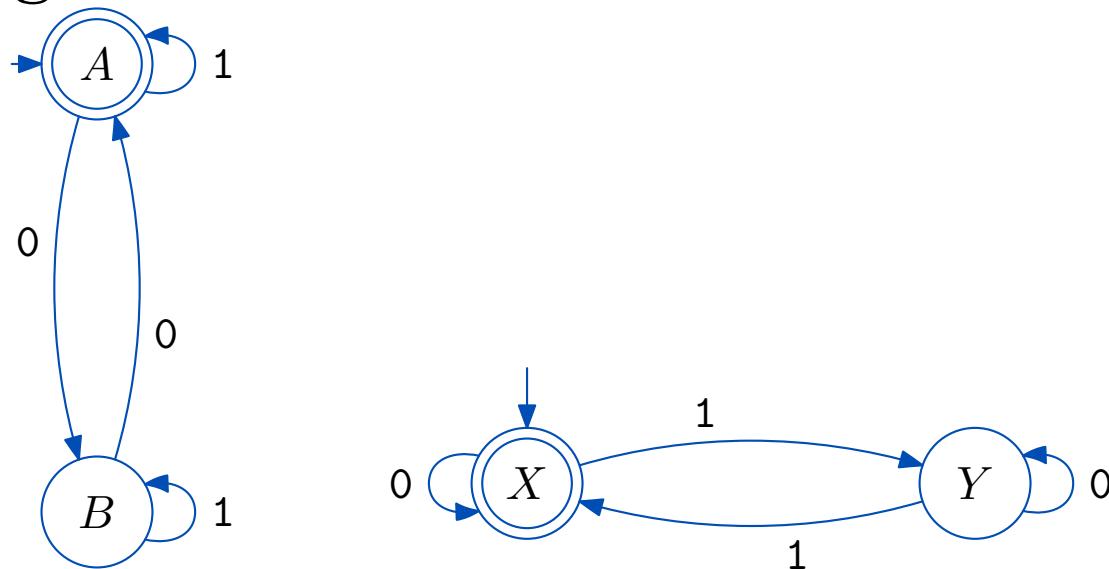
Product Construction for Intersection

Each state in the **product** is pair of states from the original machines.

Formally, if L_1 is accepted by DFA M_1 with 5-tuple $(Q_1, \Sigma, q_1, T_1, \delta_1)$ and L_2 is accepted by DFA M_2 with 5-tuple $(Q_2, \Sigma, q_2, T_2, \delta_2)$. Then $L_1 \cap L_2$ is accepted by the DFA $(Q_1 \times Q_2, \Sigma, (q_1, q_2), T_1 \times T_2, \delta)$ where $\delta((r, s), \textcolor{blue}{x}) = (\delta_1(r, \textcolor{blue}{x}), \delta_2(s, \textcolor{blue}{x}))$.

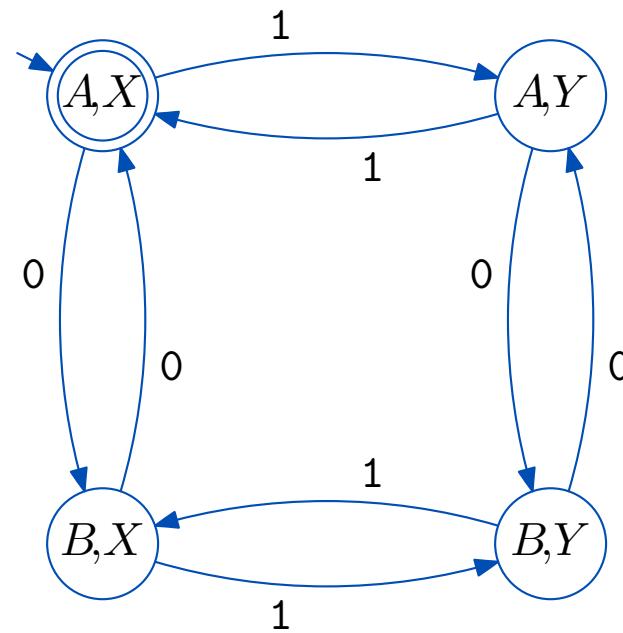
Example: Even 0's and 1's

Suppose L_1 is the binary strings with an even number of 0's, and L_2 the binary strings with an even number of 1's. Then the FAs for these languages both have two states:



And so the FA for $L_1 \cap L_2$ has four states:

Product Construction for Even 0's and 1's



Overview

A regular language is one which has an FA or an RE. Regular languages are closed under union, concatenation, star, and complementation.